| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4, 5, 6* | , ⊢ |
| : , : , : |
1 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.scalar_mult_factorization |
2 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
3 | reference | 9 | ⊢ |
4 | instantiation | 52 | ⊢ |
| : , : , : |
5 | instantiation | 15, 7, 17 | , ⊢ |
| : , : , : |
6 | instantiation | 8, 9, 10 | , ⊢ |
| : , : |
7 | instantiation | 11, 54, 55, 22, 23 | , ⊢ |
| : , : , : , : |
8 | axiom | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_extends_number_mult |
9 | instantiation | 12, 13, 14 | ⊢ |
| : , : |
10 | instantiation | 15, 16, 17 | , ⊢ |
| : , : , : |
11 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_ket_in_QmultCodomain |
12 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_complex_closure |
13 | instantiation | 101, 72, 18 | ⊢ |
| : , : , : |
14 | instantiation | 34, 19, 20 | ⊢ |
| : , : , : |
15 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
16 | instantiation | 21, 54, 55, 22, 23 | , ⊢ |
| : , : , : , : |
17 | instantiation | 24, 25, 26 | ⊢ |
| : , : , : |
18 | instantiation | 101, 77, 27 | ⊢ |
| : , : , : |
19 | instantiation | 59, 37, 28 | ⊢ |
| : , : |
20 | instantiation | 29, 30, 31 | ⊢ |
| : , : , : |
21 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_ket_is_ket |
22 | instantiation | 53, 54, 55, 32 | ⊢ |
| : , : , : |
23 | instantiation | 33, 100, 86 | ⊢ |
| : , : |
24 | axiom | | ⊢ |
| proveit.physics.quantum.algebra.multi_qmult_def |
25 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
26 | instantiation | 62 | ⊢ |
| : , : |
27 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.e_is_real_pos |
28 | instantiation | 34, 35, 36 | ⊢ |
| : , : , : |
29 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
30 | instantiation | 45, 103, 38, 46, 40, 47, 37, 60, 61, 49 | ⊢ |
| : , : , : , : , : , : |
31 | instantiation | 45, 46, 98, 38, 47, 39, 40, 50, 51, 60, 61, 49 | ⊢ |
| : , : , : , : , : , : |
32 | instantiation | 41, 54, 55, 42, 43 | ⊢ |
| : , : , : , : , : |
33 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.num_ket_in_register_space |
34 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
35 | instantiation | 59, 44, 49 | ⊢ |
| : , : |
36 | instantiation | 45, 46, 98, 103, 47, 48, 60, 61, 49 | ⊢ |
| : , : , : , : , : , : |
37 | instantiation | 59, 50, 51 | ⊢ |
| : , : |
38 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
39 | instantiation | 62 | ⊢ |
| : , : |
40 | instantiation | 52 | ⊢ |
| : , : , : |
41 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_op_is_op |
42 | instantiation | 53, 54, 55, 56 | ⊢ |
| : , : , : |
43 | instantiation | 57, 80, 58 | ⊢ |
| : , : , : |
44 | instantiation | 59, 60, 61 | ⊢ |
| : , : |
45 | theorem | | ⊢ |
| proveit.numbers.multiplication.disassociation |
46 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
47 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
48 | instantiation | 62 | ⊢ |
| : , : |
49 | instantiation | 101, 72, 63 | ⊢ |
| : , : , : |
50 | instantiation | 101, 72, 64 | ⊢ |
| : , : , : |
51 | instantiation | 101, 72, 65 | ⊢ |
| : , : , : |
52 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
53 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_is_linmap |
54 | instantiation | 66, 80 | ⊢ |
| : |
55 | theorem | | ⊢ |
| proveit.linear_algebra.inner_products.complex_set_is_hilbert_space |
56 | instantiation | 67, 100, 68 | ⊢ |
| : , : |
57 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_matrix_is_linmap |
58 | instantiation | 69, 70, 71 | ⊢ |
| : , : , : |
59 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_complex_closure_bin |
60 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.i_is_complex |
61 | instantiation | 101, 72, 73 | ⊢ |
| : , : , : |
62 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
63 | instantiation | 101, 75, 74 | ⊢ |
| : , : , : |
64 | instantiation | 101, 75, 76 | ⊢ |
| : , : , : |
65 | instantiation | 101, 77, 78 | ⊢ |
| : , : , : |
66 | theorem | | ⊢ |
| proveit.linear_algebra.inner_products.complex_vec_set_is_hilbert_space |
67 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.num_bra_is_lin_map |
68 | assumption | | ⊢ |
69 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
70 | instantiation | 79, 80 | ⊢ |
| : |
71 | instantiation | 81, 100 | ⊢ |
| : |
72 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
73 | theorem | | ⊢ |
| proveit.physics.quantum.QPE._phase_is_real |
74 | instantiation | 101, 83, 82 | ⊢ |
| : , : , : |
75 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
76 | instantiation | 101, 83, 94 | ⊢ |
| : , : , : |
77 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_pos_within_real |
78 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.pi_is_real_pos |
79 | theorem | | ⊢ |
| proveit.linear_algebra.matrices.unitaries_are_matrices |
80 | instantiation | 84, 98, 95 | ⊢ |
| : , : |
81 | theorem | | ⊢ |
| proveit.physics.quantum.QFT.invFT_is_unitary |
82 | instantiation | 101, 85, 86 | ⊢ |
| : , : , : |
83 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
84 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_natpos_closure |
85 | instantiation | 87, 88, 89 | ⊢ |
| : , : |
86 | assumption | | ⊢ |
87 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.int_interval_within_int |
88 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.zero_is_int |
89 | instantiation | 90, 91, 92 | ⊢ |
| : , : |
90 | theorem | | ⊢ |
| proveit.numbers.addition.add_int_closure_bin |
91 | instantiation | 93, 94, 95 | ⊢ |
| : , : |
92 | instantiation | 96, 97 | ⊢ |
| : |
93 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_int_closure |
94 | instantiation | 101, 102, 98 | ⊢ |
| : , : , : |
95 | instantiation | 101, 99, 100 | ⊢ |
| : , : , : |
96 | theorem | | ⊢ |
| proveit.numbers.negation.int_closure |
97 | instantiation | 101, 102, 103 | ⊢ |
| : , : , : |
98 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
99 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nat_pos_within_nat |
100 | axiom | | ⊢ |
| proveit.physics.quantum.QPE._t_in_natural_pos |
101 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
102 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
103 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |