| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3, 4 | , , , ⊢  |
| | : , : , : , :  |
| 1 | reference | 66 | ⊢  |
| 2 | instantiation | 20, 5, 6, 7, 8* | , , , ⊢  |
| | : , :  |
| 3 | instantiation | 9 | ⊢  |
| | :  |
| 4 | instantiation | 10, 11 | , , , ⊢  |
| | : , :  |
| 5 | instantiation | 115, 12, 13 | , ⊢  |
| | : , : , :  |
| 6 | instantiation | 78, 34, 103 | ⊢  |
| | : , :  |
| 7 | instantiation | 14, 163, 15, 16, 17 | , ⊢  |
| | : , :  |
| 8 | instantiation | 128, 18, 19 | , , , ⊢  |
| | : , : , :  |
| 9 | axiom | | ⊢  |
| | proveit.logic.equality.equals_reflexivity |
| 10 | theorem | | ⊢  |
| | proveit.logic.equality.equals_reversal |
| 11 | instantiation | 20, 21, 103, 36, 22* | , , , ⊢  |
| | : , :  |
| 12 | instantiation | 78, 23, 88 | , ⊢  |
| | : , :  |
| 13 | instantiation | 84, 71, 163, 164, 72, 24, 82, 87, 88 | , ⊢  |
| | : , : , : , : , : , :  |
| 14 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_not_eq_zero |
| 15 | instantiation | 121 | ⊢  |
| | : , :  |
| 16 | instantiation | 176, 138, 25 | ⊢  |
| | : , : , :  |
| 17 | instantiation | 26, 103, 36 | , ⊢  |
| | :  |
| 18 | instantiation | 150, 27 | , ⊢  |
| | : , : , :  |
| 19 | instantiation | 128, 28, 29 | , , ⊢  |
| | : , : , :  |
| 20 | theorem | | ⊢  |
| | proveit.numbers.division.div_as_mult |
| 21 | instantiation | 115, 30, 31 | , ⊢  |
| | : , : , :  |
| 22 | instantiation | 84, 71, 178, 164, 72, 32, 122, 87, 88, 90 | , , ⊢  |
| | : , : , : , : , : , :  |
| 23 | instantiation | 78, 82, 87 | ⊢  |
| | : , :  |
| 24 | instantiation | 121 | ⊢  |
| | : , :  |
| 25 | instantiation | 176, 147, 46 | ⊢  |
| | : , : , :  |
| 26 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.nonzero_complex_is_complex_nonzero |
| 27 | instantiation | 33, 34, 103, 120, 35, 36, 37* | , ⊢  |
| | : , : , :  |
| 28 | instantiation | 128, 38, 39 | , , ⊢  |
| | : , : , :  |
| 29 | instantiation | 128, 40, 41 | , , ⊢  |
| | : , : , :  |
| 30 | instantiation | 78, 42, 88 | , ⊢  |
| | : , :  |
| 31 | instantiation | 84, 71, 163, 164, 72, 43, 122, 87, 88 | , ⊢  |
| | : , : , : , : , : , :  |
| 32 | instantiation | 91 | ⊢  |
| | : , : , :  |
| 33 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.real_power_of_product |
| 34 | instantiation | 176, 169, 44 | ⊢  |
| | : , : , :  |
| 35 | instantiation | 45, 46 | ⊢  |
| | :  |
| 36 | assumption | | ⊢  |
| 37 | instantiation | 47, 126, 125, 168, 48*, 49* | ⊢  |
| | : , : , :  |
| 38 | instantiation | 128, 50, 51 | , , ⊢  |
| | : , : , :  |
| 39 | instantiation | 66, 52, 53, 54 | , , ⊢  |
| | : , : , : , :  |
| 40 | instantiation | 70, 164, 163, 85, 132, 87, 88, 89, 90 | , , ⊢  |
| | : , : , : , : , : , : , :  |
| 41 | instantiation | 79, 71, 163, 178, 72, 55, 56, 132, 89, 87, 88, 90, 57* | , , ⊢  |
| | : , : , : , : , : , :  |
| 42 | instantiation | 78, 122, 87 | ⊢  |
| | : , :  |
| 43 | instantiation | 121 | ⊢  |
| | : , :  |
| 44 | instantiation | 176, 172, 58 | ⊢  |
| | : , : , :  |
| 45 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.nonzero_if_in_rational_nonzero |
| 46 | instantiation | 176, 59, 77 | ⊢  |
| | : , : , :  |
| 47 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.neg_power_of_quotient |
| 48 | instantiation | 60, 161 | ⊢  |
| | :  |
| 49 | instantiation | 60, 122 | ⊢  |
| | :  |
| 50 | instantiation | 84, 71, 178, 164, 72, 62, 82, 87, 88, 61 | , , ⊢  |
| | : , : , : , : , : , :  |
| 51 | instantiation | 84, 178, 163, 71, 62, 63, 72, 82, 87, 88, 81, 90 | , , ⊢  |
| | : , : , : , : , : , :  |
| 52 | instantiation | 64, 71, 178, 164, 72, 65, 82, 87, 88, 81, 90 | , , ⊢  |
| | : , : , : , : , : , : , :  |
| 53 | instantiation | 66, 67, 68, 69 | , , ⊢  |
| | : , : , : , :  |
| 54 | instantiation | 70, 71, 178, 164, 72, 73, 87, 88, 89, 132, 90 | , , ⊢  |
| | : , : , : , : , : , : , :  |
| 55 | instantiation | 121 | ⊢  |
| | : , :  |
| 56 | instantiation | 91 | ⊢  |
| | : , : , :  |
| 57 | instantiation | 74, 132, 124, 127, 126, 118*, 75* | ⊢  |
| | : , : , : , :  |
| 58 | instantiation | 176, 76, 77 | ⊢  |
| | : , : , :  |
| 59 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational_nonzero |
| 60 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
| 61 | instantiation | 78, 81, 90 | ⊢  |
| | : , :  |
| 62 | instantiation | 91 | ⊢  |
| | : , : , :  |
| 63 | instantiation | 121 | ⊢  |
| | : , :  |
| 64 | theorem | | ⊢  |
| | proveit.numbers.multiplication.rightward_commutation |
| 65 | instantiation | 91 | ⊢  |
| | : , : , :  |
| 66 | theorem | | ⊢  |
| | proveit.logic.equality.four_chain_transitivity |
| 67 | instantiation | 79, 163, 164, 85, 80, 87, 88, 81, 82, 90 | , , ⊢  |
| | : , : , : , : , : , :  |
| 68 | instantiation | 150, 83 | ⊢  |
| | : , : , :  |
| 69 | instantiation | 84, 163, 164, 85, 86, 87, 88, 89, 132, 90 | , , ⊢  |
| | : , : , : , : , : , :  |
| 70 | theorem | | ⊢  |
| | proveit.numbers.multiplication.leftward_commutation |
| 71 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 72 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 73 | instantiation | 91 | ⊢  |
| | : , : , :  |
| 74 | theorem | | ⊢  |
| | proveit.numbers.division.prod_of_fracs |
| 75 | instantiation | 128, 92, 93 | ⊢  |
| | : , : , :  |
| 76 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational |
| 77 | instantiation | 94, 95, 96 | ⊢  |
| | : , :  |
| 78 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_complex_closure_bin |
| 79 | theorem | | ⊢  |
| | proveit.numbers.multiplication.association |
| 80 | instantiation | 121 | ⊢  |
| | : , :  |
| 81 | instantiation | 100, 161, 122, 101 | ⊢  |
| | : , :  |
| 82 | instantiation | 100, 132, 161, 97 | ⊢  |
| | : , :  |
| 83 | instantiation | 115, 98, 99 | ⊢  |
| | : , : , :  |
| 84 | theorem | | ⊢  |
| | proveit.numbers.multiplication.disassociation |
| 85 | instantiation | 121 | ⊢  |
| | : , :  |
| 86 | instantiation | 121 | ⊢  |
| | : , :  |
| 87 | assumption | | ⊢  |
| 88 | assumption | | ⊢  |
| 89 | instantiation | 100, 124, 122, 101 | ⊢  |
| | : , :  |
| 90 | instantiation | 102, 103, 104 | ⊢  |
| | : , :  |
| 91 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
| 92 | instantiation | 105, 163, 106, 107, 108, 109 | ⊢  |
| | : , : , : , :  |
| 93 | instantiation | 110, 126, 127, 122, 111*, 112*, 113* | ⊢  |
| | : , : , :  |
| 94 | theorem | | ⊢  |
| | proveit.numbers.division.div_rational_pos_closure |
| 95 | instantiation | 176, 114, 166 | ⊢  |
| | : , : , :  |
| 96 | instantiation | 176, 114, 165 | ⊢  |
| | : , : , :  |
| 97 | instantiation | 119, 165 | ⊢  |
| | :  |
| 98 | instantiation | 115, 116, 117 | ⊢  |
| | : , : , :  |
| 99 | instantiation | 150, 118 | ⊢  |
| | : , : , :  |
| 100 | theorem | | ⊢  |
| | proveit.numbers.division.div_complex_closure |
| 101 | instantiation | 119, 166 | ⊢  |
| | :  |
| 102 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.exp_complex_closure |
| 103 | assumption | | ⊢  |
| 104 | instantiation | 176, 169, 120 | ⊢  |
| | : , : , :  |
| 105 | axiom | | ⊢  |
| | proveit.core_expr_types.operations.operands_substitution |
| 106 | instantiation | 121 | ⊢  |
| | : , :  |
| 107 | instantiation | 121 | ⊢  |
| | : , :  |
| 108 | instantiation | 160, 132 | ⊢  |
| | :  |
| 109 | instantiation | 159, 122 | ⊢  |
| | :  |
| 110 | theorem | | ⊢  |
| | proveit.numbers.division.frac_cancel_left |
| 111 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.mult_2_2 |
| 112 | instantiation | 160, 122 | ⊢  |
| | :  |
| 113 | instantiation | 131, 122 | ⊢  |
| | :  |
| 114 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.nat_pos_within_rational_pos |
| 115 | theorem | | ⊢  |
| | proveit.logic.equality.sub_right_side_into |
| 116 | instantiation | 123, 124, 132, 125, 126, 127 | ⊢  |
| | : , : , : , : , :  |
| 117 | instantiation | 128, 129, 130 | ⊢  |
| | : , : , :  |
| 118 | instantiation | 131, 132 | ⊢  |
| | :  |
| 119 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
| 120 | instantiation | 133, 135 | ⊢  |
| | :  |
| 121 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 122 | instantiation | 176, 169, 134 | ⊢  |
| | : , : , :  |
| 123 | theorem | | ⊢  |
| | proveit.numbers.division.mult_frac_cancel_numer_left |
| 124 | instantiation | 176, 169, 135 | ⊢  |
| | : , : , :  |
| 125 | instantiation | 176, 138, 136 | ⊢  |
| | : , : , :  |
| 126 | instantiation | 176, 138, 137 | ⊢  |
| | : , : , :  |
| 127 | instantiation | 176, 138, 139 | ⊢  |
| | : , : , :  |
| 128 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 129 | instantiation | 150, 140 | ⊢  |
| | : , : , :  |
| 130 | instantiation | 150, 141 | ⊢  |
| | : , : , :  |
| 131 | theorem | | ⊢  |
| | proveit.numbers.division.frac_one_denom |
| 132 | instantiation | 176, 169, 142 | ⊢  |
| | : , : , :  |
| 133 | theorem | | ⊢  |
| | proveit.numbers.negation.real_closure |
| 134 | instantiation | 176, 172, 143 | ⊢  |
| | : , : , :  |
| 135 | instantiation | 176, 172, 144 | ⊢  |
| | : , : , :  |
| 136 | instantiation | 176, 147, 145 | ⊢  |
| | : , : , :  |
| 137 | instantiation | 176, 147, 146 | ⊢  |
| | : , : , :  |
| 138 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
| 139 | instantiation | 176, 147, 148 | ⊢  |
| | : , : , :  |
| 140 | instantiation | 150, 149 | ⊢  |
| | : , : , :  |
| 141 | instantiation | 150, 151 | ⊢  |
| | : , : , :  |
| 142 | instantiation | 176, 172, 152 | ⊢  |
| | : , : , :  |
| 143 | instantiation | 176, 174, 153 | ⊢  |
| | : , : , :  |
| 144 | instantiation | 176, 174, 154 | ⊢  |
| | : , : , :  |
| 145 | instantiation | 176, 157, 155 | ⊢  |
| | : , : , :  |
| 146 | instantiation | 176, 157, 156 | ⊢  |
| | : , : , :  |
| 147 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
| 148 | instantiation | 176, 157, 158 | ⊢  |
| | : , : , :  |
| 149 | instantiation | 159, 161 | ⊢  |
| | :  |
| 150 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 151 | instantiation | 160, 161 | ⊢  |
| | :  |
| 152 | instantiation | 176, 174, 162 | ⊢  |
| | : , : , :  |
| 153 | instantiation | 176, 177, 163 | ⊢  |
| | : , : , :  |
| 154 | instantiation | 176, 177, 164 | ⊢  |
| | : , : , :  |
| 155 | instantiation | 176, 167, 165 | ⊢  |
| | : , : , :  |
| 156 | instantiation | 176, 167, 166 | ⊢  |
| | : , : , :  |
| 157 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
| 158 | instantiation | 176, 167, 168 | ⊢  |
| | : , : , :  |
| 159 | theorem | | ⊢  |
| | proveit.numbers.multiplication.elim_one_left |
| 160 | theorem | | ⊢  |
| | proveit.numbers.multiplication.elim_one_right |
| 161 | instantiation | 176, 169, 170 | ⊢  |
| | : , : , :  |
| 162 | instantiation | 176, 177, 171 | ⊢  |
| | : , : , :  |
| 163 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 164 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 165 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 166 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 167 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
| 168 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat1 |
| 169 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 170 | instantiation | 176, 172, 173 | ⊢  |
| | : , : , :  |
| 171 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| 172 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 173 | instantiation | 176, 174, 175 | ⊢  |
| | : , : , :  |
| 174 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 175 | instantiation | 176, 177, 178 | ⊢  |
| | : , : , :  |
| 176 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 177 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 178 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |
| *equality replacement requirements |