| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4 | , , , ⊢  |
| : , : , : , :  |
1 | reference | 66 | ⊢  |
2 | instantiation | 20, 5, 6, 7, 8* | , , , ⊢  |
| : , :  |
3 | instantiation | 9 | ⊢  |
| :  |
4 | instantiation | 10, 11 | , , , ⊢  |
| : , :  |
5 | instantiation | 115, 12, 13 | , ⊢  |
| : , : , :  |
6 | instantiation | 78, 34, 103 | ⊢  |
| : , :  |
7 | instantiation | 14, 163, 15, 16, 17 | , ⊢  |
| : , :  |
8 | instantiation | 128, 18, 19 | , , , ⊢  |
| : , : , :  |
9 | axiom | | ⊢  |
| proveit.logic.equality.equals_reflexivity |
10 | theorem | | ⊢  |
| proveit.logic.equality.equals_reversal |
11 | instantiation | 20, 21, 103, 36, 22* | , , , ⊢  |
| : , :  |
12 | instantiation | 78, 23, 88 | , ⊢  |
| : , :  |
13 | instantiation | 84, 71, 163, 164, 72, 24, 82, 87, 88 | , ⊢  |
| : , : , : , : , : , :  |
14 | theorem | | ⊢  |
| proveit.numbers.multiplication.mult_not_eq_zero |
15 | instantiation | 121 | ⊢  |
| : , :  |
16 | instantiation | 176, 138, 25 | ⊢  |
| : , : , :  |
17 | instantiation | 26, 103, 36 | , ⊢  |
| :  |
18 | instantiation | 150, 27 | , ⊢  |
| : , : , :  |
19 | instantiation | 128, 28, 29 | , , ⊢  |
| : , : , :  |
20 | theorem | | ⊢  |
| proveit.numbers.division.div_as_mult |
21 | instantiation | 115, 30, 31 | , ⊢  |
| : , : , :  |
22 | instantiation | 84, 71, 178, 164, 72, 32, 122, 87, 88, 90 | , , ⊢  |
| : , : , : , : , : , :  |
23 | instantiation | 78, 82, 87 | ⊢  |
| : , :  |
24 | instantiation | 121 | ⊢  |
| : , :  |
25 | instantiation | 176, 147, 46 | ⊢  |
| : , : , :  |
26 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.nonzero_complex_is_complex_nonzero |
27 | instantiation | 33, 34, 103, 120, 35, 36, 37* | , ⊢  |
| : , : , :  |
28 | instantiation | 128, 38, 39 | , , ⊢  |
| : , : , :  |
29 | instantiation | 128, 40, 41 | , , ⊢  |
| : , : , :  |
30 | instantiation | 78, 42, 88 | , ⊢  |
| : , :  |
31 | instantiation | 84, 71, 163, 164, 72, 43, 122, 87, 88 | , ⊢  |
| : , : , : , : , : , :  |
32 | instantiation | 91 | ⊢  |
| : , : , :  |
33 | theorem | | ⊢  |
| proveit.numbers.exponentiation.real_power_of_product |
34 | instantiation | 176, 169, 44 | ⊢  |
| : , : , :  |
35 | instantiation | 45, 46 | ⊢  |
| :  |
36 | assumption | | ⊢  |
37 | instantiation | 47, 126, 125, 168, 48*, 49* | ⊢  |
| : , : , :  |
38 | instantiation | 128, 50, 51 | , , ⊢  |
| : , : , :  |
39 | instantiation | 66, 52, 53, 54 | , , ⊢  |
| : , : , : , :  |
40 | instantiation | 70, 164, 163, 85, 132, 87, 88, 89, 90 | , , ⊢  |
| : , : , : , : , : , : , :  |
41 | instantiation | 79, 71, 163, 178, 72, 55, 56, 132, 89, 87, 88, 90, 57* | , , ⊢  |
| : , : , : , : , : , :  |
42 | instantiation | 78, 122, 87 | ⊢  |
| : , :  |
43 | instantiation | 121 | ⊢  |
| : , :  |
44 | instantiation | 176, 172, 58 | ⊢  |
| : , : , :  |
45 | theorem | | ⊢  |
| proveit.numbers.number_sets.rational_numbers.nonzero_if_in_rational_nonzero |
46 | instantiation | 176, 59, 77 | ⊢  |
| : , : , :  |
47 | theorem | | ⊢  |
| proveit.numbers.exponentiation.neg_power_of_quotient |
48 | instantiation | 60, 161 | ⊢  |
| :  |
49 | instantiation | 60, 122 | ⊢  |
| :  |
50 | instantiation | 84, 71, 178, 164, 72, 62, 82, 87, 88, 61 | , , ⊢  |
| : , : , : , : , : , :  |
51 | instantiation | 84, 178, 163, 71, 62, 63, 72, 82, 87, 88, 81, 90 | , , ⊢  |
| : , : , : , : , : , :  |
52 | instantiation | 64, 71, 178, 164, 72, 65, 82, 87, 88, 81, 90 | , , ⊢  |
| : , : , : , : , : , : , :  |
53 | instantiation | 66, 67, 68, 69 | , , ⊢  |
| : , : , : , :  |
54 | instantiation | 70, 71, 178, 164, 72, 73, 87, 88, 89, 132, 90 | , , ⊢  |
| : , : , : , : , : , : , :  |
55 | instantiation | 121 | ⊢  |
| : , :  |
56 | instantiation | 91 | ⊢  |
| : , : , :  |
57 | instantiation | 74, 132, 124, 127, 126, 118*, 75* | ⊢  |
| : , : , : , :  |
58 | instantiation | 176, 76, 77 | ⊢  |
| : , : , :  |
59 | theorem | | ⊢  |
| proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational_nonzero |
60 | theorem | | ⊢  |
| proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
61 | instantiation | 78, 81, 90 | ⊢  |
| : , :  |
62 | instantiation | 91 | ⊢  |
| : , : , :  |
63 | instantiation | 121 | ⊢  |
| : , :  |
64 | theorem | | ⊢  |
| proveit.numbers.multiplication.rightward_commutation |
65 | instantiation | 91 | ⊢  |
| : , : , :  |
66 | theorem | | ⊢  |
| proveit.logic.equality.four_chain_transitivity |
67 | instantiation | 79, 163, 164, 85, 80, 87, 88, 81, 82, 90 | , , ⊢  |
| : , : , : , : , : , :  |
68 | instantiation | 150, 83 | ⊢  |
| : , : , :  |
69 | instantiation | 84, 163, 164, 85, 86, 87, 88, 89, 132, 90 | , , ⊢  |
| : , : , : , : , : , :  |
70 | theorem | | ⊢  |
| proveit.numbers.multiplication.leftward_commutation |
71 | axiom | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
72 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
73 | instantiation | 91 | ⊢  |
| : , : , :  |
74 | theorem | | ⊢  |
| proveit.numbers.division.prod_of_fracs |
75 | instantiation | 128, 92, 93 | ⊢  |
| : , : , :  |
76 | theorem | | ⊢  |
| proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational |
77 | instantiation | 94, 95, 96 | ⊢  |
| : , :  |
78 | theorem | | ⊢  |
| proveit.numbers.multiplication.mult_complex_closure_bin |
79 | theorem | | ⊢  |
| proveit.numbers.multiplication.association |
80 | instantiation | 121 | ⊢  |
| : , :  |
81 | instantiation | 100, 161, 122, 101 | ⊢  |
| : , :  |
82 | instantiation | 100, 132, 161, 97 | ⊢  |
| : , :  |
83 | instantiation | 115, 98, 99 | ⊢  |
| : , : , :  |
84 | theorem | | ⊢  |
| proveit.numbers.multiplication.disassociation |
85 | instantiation | 121 | ⊢  |
| : , :  |
86 | instantiation | 121 | ⊢  |
| : , :  |
87 | assumption | | ⊢  |
88 | assumption | | ⊢  |
89 | instantiation | 100, 124, 122, 101 | ⊢  |
| : , :  |
90 | instantiation | 102, 103, 104 | ⊢  |
| : , :  |
91 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
92 | instantiation | 105, 163, 106, 107, 108, 109 | ⊢  |
| : , : , : , :  |
93 | instantiation | 110, 126, 127, 122, 111*, 112*, 113* | ⊢  |
| : , : , :  |
94 | theorem | | ⊢  |
| proveit.numbers.division.div_rational_pos_closure |
95 | instantiation | 176, 114, 166 | ⊢  |
| : , : , :  |
96 | instantiation | 176, 114, 165 | ⊢  |
| : , : , :  |
97 | instantiation | 119, 165 | ⊢  |
| :  |
98 | instantiation | 115, 116, 117 | ⊢  |
| : , : , :  |
99 | instantiation | 150, 118 | ⊢  |
| : , : , :  |
100 | theorem | | ⊢  |
| proveit.numbers.division.div_complex_closure |
101 | instantiation | 119, 166 | ⊢  |
| :  |
102 | theorem | | ⊢  |
| proveit.numbers.exponentiation.exp_complex_closure |
103 | assumption | | ⊢  |
104 | instantiation | 176, 169, 120 | ⊢  |
| : , : , :  |
105 | axiom | | ⊢  |
| proveit.core_expr_types.operations.operands_substitution |
106 | instantiation | 121 | ⊢  |
| : , :  |
107 | instantiation | 121 | ⊢  |
| : , :  |
108 | instantiation | 160, 132 | ⊢  |
| :  |
109 | instantiation | 159, 122 | ⊢  |
| :  |
110 | theorem | | ⊢  |
| proveit.numbers.division.frac_cancel_left |
111 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.mult_2_2 |
112 | instantiation | 160, 122 | ⊢  |
| :  |
113 | instantiation | 131, 122 | ⊢  |
| :  |
114 | theorem | | ⊢  |
| proveit.numbers.number_sets.rational_numbers.nat_pos_within_rational_pos |
115 | theorem | | ⊢  |
| proveit.logic.equality.sub_right_side_into |
116 | instantiation | 123, 124, 132, 125, 126, 127 | ⊢  |
| : , : , : , : , :  |
117 | instantiation | 128, 129, 130 | ⊢  |
| : , : , :  |
118 | instantiation | 131, 132 | ⊢  |
| :  |
119 | theorem | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
120 | instantiation | 133, 135 | ⊢  |
| :  |
121 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
122 | instantiation | 176, 169, 134 | ⊢  |
| : , : , :  |
123 | theorem | | ⊢  |
| proveit.numbers.division.mult_frac_cancel_numer_left |
124 | instantiation | 176, 169, 135 | ⊢  |
| : , : , :  |
125 | instantiation | 176, 138, 136 | ⊢  |
| : , : , :  |
126 | instantiation | 176, 138, 137 | ⊢  |
| : , : , :  |
127 | instantiation | 176, 138, 139 | ⊢  |
| : , : , :  |
128 | axiom | | ⊢  |
| proveit.logic.equality.equals_transitivity |
129 | instantiation | 150, 140 | ⊢  |
| : , : , :  |
130 | instantiation | 150, 141 | ⊢  |
| : , : , :  |
131 | theorem | | ⊢  |
| proveit.numbers.division.frac_one_denom |
132 | instantiation | 176, 169, 142 | ⊢  |
| : , : , :  |
133 | theorem | | ⊢  |
| proveit.numbers.negation.real_closure |
134 | instantiation | 176, 172, 143 | ⊢  |
| : , : , :  |
135 | instantiation | 176, 172, 144 | ⊢  |
| : , : , :  |
136 | instantiation | 176, 147, 145 | ⊢  |
| : , : , :  |
137 | instantiation | 176, 147, 146 | ⊢  |
| : , : , :  |
138 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
139 | instantiation | 176, 147, 148 | ⊢  |
| : , : , :  |
140 | instantiation | 150, 149 | ⊢  |
| : , : , :  |
141 | instantiation | 150, 151 | ⊢  |
| : , : , :  |
142 | instantiation | 176, 172, 152 | ⊢  |
| : , : , :  |
143 | instantiation | 176, 174, 153 | ⊢  |
| : , : , :  |
144 | instantiation | 176, 174, 154 | ⊢  |
| : , : , :  |
145 | instantiation | 176, 157, 155 | ⊢  |
| : , : , :  |
146 | instantiation | 176, 157, 156 | ⊢  |
| : , : , :  |
147 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
148 | instantiation | 176, 157, 158 | ⊢  |
| : , : , :  |
149 | instantiation | 159, 161 | ⊢  |
| :  |
150 | axiom | | ⊢  |
| proveit.logic.equality.substitution |
151 | instantiation | 160, 161 | ⊢  |
| :  |
152 | instantiation | 176, 174, 162 | ⊢  |
| : , : , :  |
153 | instantiation | 176, 177, 163 | ⊢  |
| : , : , :  |
154 | instantiation | 176, 177, 164 | ⊢  |
| : , : , :  |
155 | instantiation | 176, 167, 165 | ⊢  |
| : , : , :  |
156 | instantiation | 176, 167, 166 | ⊢  |
| : , : , :  |
157 | theorem | | ⊢  |
| proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
158 | instantiation | 176, 167, 168 | ⊢  |
| : , : , :  |
159 | theorem | | ⊢  |
| proveit.numbers.multiplication.elim_one_left |
160 | theorem | | ⊢  |
| proveit.numbers.multiplication.elim_one_right |
161 | instantiation | 176, 169, 170 | ⊢  |
| : , : , :  |
162 | instantiation | 176, 177, 171 | ⊢  |
| : , : , :  |
163 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat2 |
164 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat1 |
165 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat3 |
166 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat2 |
167 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
168 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat1 |
169 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
170 | instantiation | 176, 172, 173 | ⊢  |
| : , : , :  |
171 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat4 |
172 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
173 | instantiation | 176, 174, 175 | ⊢  |
| : , : , :  |
174 | theorem | | ⊢  |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
175 | instantiation | 176, 177, 178 | ⊢  |
| : , : , :  |
176 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
177 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nat_within_int |
178 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat3 |
*equality replacement requirements |