| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4, 5* | , , , ⊢ |
| : , : |
1 | theorem | | ⊢ |
| proveit.numbers.division.div_as_mult |
2 | instantiation | 101, 6, 7 | , ⊢ |
| : , : , : |
3 | instantiation | 64, 22, 89 | ⊢ |
| : , : |
4 | instantiation | 8, 149, 9, 10, 11 | , ⊢ |
| : , : |
5 | instantiation | 114, 12, 13 | , , , ⊢ |
| : , : , : |
6 | instantiation | 64, 14, 74 | , ⊢ |
| : , : |
7 | instantiation | 70, 57, 149, 150, 58, 15, 68, 73, 74 | , ⊢ |
| : , : , : , : , : , : |
8 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_not_eq_zero |
9 | instantiation | 107 | ⊢ |
| : , : |
10 | instantiation | 162, 124, 16 | ⊢ |
| : , : , : |
11 | instantiation | 17, 89, 24 | , ⊢ |
| : |
12 | instantiation | 136, 18 | , ⊢ |
| : , : , : |
13 | instantiation | 114, 19, 20 | , , ⊢ |
| : , : , : |
14 | instantiation | 64, 68, 73 | ⊢ |
| : , : |
15 | instantiation | 107 | ⊢ |
| : , : |
16 | instantiation | 162, 133, 32 | ⊢ |
| : , : , : |
17 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.nonzero_complex_is_complex_nonzero |
18 | instantiation | 21, 22, 89, 106, 23, 24, 25* | , ⊢ |
| : , : , : |
19 | instantiation | 114, 26, 27 | , , ⊢ |
| : , : , : |
20 | instantiation | 114, 28, 29 | , , ⊢ |
| : , : , : |
21 | theorem | | ⊢ |
| proveit.numbers.exponentiation.real_power_of_product |
22 | instantiation | 162, 155, 30 | ⊢ |
| : , : , : |
23 | instantiation | 31, 32 | ⊢ |
| : |
24 | assumption | | ⊢ |
25 | instantiation | 33, 112, 111, 154, 34*, 35* | ⊢ |
| : , : , : |
26 | instantiation | 114, 36, 37 | , , ⊢ |
| : , : , : |
27 | instantiation | 52, 38, 39, 40 | , , ⊢ |
| : , : , : , : |
28 | instantiation | 56, 150, 149, 71, 118, 73, 74, 75, 76 | , , ⊢ |
| : , : , : , : , : , : , : |
29 | instantiation | 65, 57, 149, 164, 58, 41, 42, 118, 75, 73, 74, 76, 43* | , , ⊢ |
| : , : , : , : , : , : |
30 | instantiation | 162, 158, 44 | ⊢ |
| : , : , : |
31 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nonzero_if_in_rational_nonzero |
32 | instantiation | 162, 45, 63 | ⊢ |
| : , : , : |
33 | theorem | | ⊢ |
| proveit.numbers.exponentiation.neg_power_of_quotient |
34 | instantiation | 46, 147 | ⊢ |
| : |
35 | instantiation | 46, 108 | ⊢ |
| : |
36 | instantiation | 70, 57, 164, 150, 58, 48, 68, 73, 74, 47 | , , ⊢ |
| : , : , : , : , : , : |
37 | instantiation | 70, 164, 149, 57, 48, 49, 58, 68, 73, 74, 67, 76 | , , ⊢ |
| : , : , : , : , : , : |
38 | instantiation | 50, 57, 164, 150, 58, 51, 68, 73, 74, 67, 76 | , , ⊢ |
| : , : , : , : , : , : , : |
39 | instantiation | 52, 53, 54, 55 | , , ⊢ |
| : , : , : , : |
40 | instantiation | 56, 57, 164, 150, 58, 59, 73, 74, 75, 118, 76 | , , ⊢ |
| : , : , : , : , : , : , : |
41 | instantiation | 107 | ⊢ |
| : , : |
42 | instantiation | 77 | ⊢ |
| : , : , : |
43 | instantiation | 60, 118, 110, 113, 112, 104*, 61* | ⊢ |
| : , : , : , : |
44 | instantiation | 162, 62, 63 | ⊢ |
| : , : , : |
45 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational_nonzero |
46 | theorem | | ⊢ |
| proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
47 | instantiation | 64, 67, 76 | ⊢ |
| : , : |
48 | instantiation | 77 | ⊢ |
| : , : , : |
49 | instantiation | 107 | ⊢ |
| : , : |
50 | theorem | | ⊢ |
| proveit.numbers.multiplication.rightward_commutation |
51 | instantiation | 77 | ⊢ |
| : , : , : |
52 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
53 | instantiation | 65, 149, 150, 71, 66, 73, 74, 67, 68, 76 | , , ⊢ |
| : , : , : , : , : , : |
54 | instantiation | 136, 69 | ⊢ |
| : , : , : |
55 | instantiation | 70, 149, 150, 71, 72, 73, 74, 75, 118, 76 | , , ⊢ |
| : , : , : , : , : , : |
56 | theorem | | ⊢ |
| proveit.numbers.multiplication.leftward_commutation |
57 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
58 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
59 | instantiation | 77 | ⊢ |
| : , : , : |
60 | theorem | | ⊢ |
| proveit.numbers.division.prod_of_fracs |
61 | instantiation | 114, 78, 79 | ⊢ |
| : , : , : |
62 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational |
63 | instantiation | 80, 81, 82 | ⊢ |
| : , : |
64 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_complex_closure_bin |
65 | theorem | | ⊢ |
| proveit.numbers.multiplication.association |
66 | instantiation | 107 | ⊢ |
| : , : |
67 | instantiation | 86, 147, 108, 87 | ⊢ |
| : , : |
68 | instantiation | 86, 118, 147, 83 | ⊢ |
| : , : |
69 | instantiation | 101, 84, 85 | ⊢ |
| : , : , : |
70 | theorem | | ⊢ |
| proveit.numbers.multiplication.disassociation |
71 | instantiation | 107 | ⊢ |
| : , : |
72 | instantiation | 107 | ⊢ |
| : , : |
73 | assumption | | ⊢ |
74 | assumption | | ⊢ |
75 | instantiation | 86, 110, 108, 87 | ⊢ |
| : , : |
76 | instantiation | 88, 89, 90 | ⊢ |
| : , : |
77 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
78 | instantiation | 91, 149, 92, 93, 94, 95 | ⊢ |
| : , : , : , : |
79 | instantiation | 96, 112, 113, 108, 97*, 98*, 99* | ⊢ |
| : , : , : |
80 | theorem | | ⊢ |
| proveit.numbers.division.div_rational_pos_closure |
81 | instantiation | 162, 100, 152 | ⊢ |
| : , : , : |
82 | instantiation | 162, 100, 151 | ⊢ |
| : , : , : |
83 | instantiation | 105, 151 | ⊢ |
| : |
84 | instantiation | 101, 102, 103 | ⊢ |
| : , : , : |
85 | instantiation | 136, 104 | ⊢ |
| : , : , : |
86 | theorem | | ⊢ |
| proveit.numbers.division.div_complex_closure |
87 | instantiation | 105, 152 | ⊢ |
| : |
88 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_complex_closure |
89 | assumption | | ⊢ |
90 | instantiation | 162, 155, 106 | ⊢ |
| : , : , : |
91 | axiom | | ⊢ |
| proveit.core_expr_types.operations.operands_substitution |
92 | instantiation | 107 | ⊢ |
| : , : |
93 | instantiation | 107 | ⊢ |
| : , : |
94 | instantiation | 146, 118 | ⊢ |
| : |
95 | instantiation | 145, 108 | ⊢ |
| : |
96 | theorem | | ⊢ |
| proveit.numbers.division.frac_cancel_left |
97 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.mult_2_2 |
98 | instantiation | 146, 108 | ⊢ |
| : |
99 | instantiation | 117, 108 | ⊢ |
| : |
100 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nat_pos_within_rational_pos |
101 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
102 | instantiation | 109, 110, 118, 111, 112, 113 | ⊢ |
| : , : , : , : , : |
103 | instantiation | 114, 115, 116 | ⊢ |
| : , : , : |
104 | instantiation | 117, 118 | ⊢ |
| : |
105 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
106 | instantiation | 119, 121 | ⊢ |
| : |
107 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
108 | instantiation | 162, 155, 120 | ⊢ |
| : , : , : |
109 | theorem | | ⊢ |
| proveit.numbers.division.mult_frac_cancel_numer_left |
110 | instantiation | 162, 155, 121 | ⊢ |
| : , : , : |
111 | instantiation | 162, 124, 122 | ⊢ |
| : , : , : |
112 | instantiation | 162, 124, 123 | ⊢ |
| : , : , : |
113 | instantiation | 162, 124, 125 | ⊢ |
| : , : , : |
114 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
115 | instantiation | 136, 126 | ⊢ |
| : , : , : |
116 | instantiation | 136, 127 | ⊢ |
| : , : , : |
117 | theorem | | ⊢ |
| proveit.numbers.division.frac_one_denom |
118 | instantiation | 162, 155, 128 | ⊢ |
| : , : , : |
119 | theorem | | ⊢ |
| proveit.numbers.negation.real_closure |
120 | instantiation | 162, 158, 129 | ⊢ |
| : , : , : |
121 | instantiation | 162, 158, 130 | ⊢ |
| : , : , : |
122 | instantiation | 162, 133, 131 | ⊢ |
| : , : , : |
123 | instantiation | 162, 133, 132 | ⊢ |
| : , : , : |
124 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
125 | instantiation | 162, 133, 134 | ⊢ |
| : , : , : |
126 | instantiation | 136, 135 | ⊢ |
| : , : , : |
127 | instantiation | 136, 137 | ⊢ |
| : , : , : |
128 | instantiation | 162, 158, 138 | ⊢ |
| : , : , : |
129 | instantiation | 162, 160, 139 | ⊢ |
| : , : , : |
130 | instantiation | 162, 160, 140 | ⊢ |
| : , : , : |
131 | instantiation | 162, 143, 141 | ⊢ |
| : , : , : |
132 | instantiation | 162, 143, 142 | ⊢ |
| : , : , : |
133 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
134 | instantiation | 162, 143, 144 | ⊢ |
| : , : , : |
135 | instantiation | 145, 147 | ⊢ |
| : |
136 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
137 | instantiation | 146, 147 | ⊢ |
| : |
138 | instantiation | 162, 160, 148 | ⊢ |
| : , : , : |
139 | instantiation | 162, 163, 149 | ⊢ |
| : , : , : |
140 | instantiation | 162, 163, 150 | ⊢ |
| : , : , : |
141 | instantiation | 162, 153, 151 | ⊢ |
| : , : , : |
142 | instantiation | 162, 153, 152 | ⊢ |
| : , : , : |
143 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
144 | instantiation | 162, 153, 154 | ⊢ |
| : , : , : |
145 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_left |
146 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_right |
147 | instantiation | 162, 155, 156 | ⊢ |
| : , : , : |
148 | instantiation | 162, 163, 157 | ⊢ |
| : , : , : |
149 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
150 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
151 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
152 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
153 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
154 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
155 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
156 | instantiation | 162, 158, 159 | ⊢ |
| : , : , : |
157 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
158 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
159 | instantiation | 162, 160, 161 | ⊢ |
| : , : , : |
160 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
161 | instantiation | 162, 163, 164 | ⊢ |
| : , : , : |
162 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
163 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
164 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
*equality replacement requirements |