| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3, 4, 5* | , , , ⊢  |
| | : , :  |
| 1 | theorem | | ⊢  |
| | proveit.numbers.division.div_as_mult |
| 2 | instantiation | 101, 6, 7 | , ⊢  |
| | : , : , :  |
| 3 | instantiation | 64, 22, 89 | ⊢  |
| | : , :  |
| 4 | instantiation | 8, 149, 9, 10, 11 | , ⊢  |
| | : , :  |
| 5 | instantiation | 114, 12, 13 | , , , ⊢  |
| | : , : , :  |
| 6 | instantiation | 64, 14, 74 | , ⊢  |
| | : , :  |
| 7 | instantiation | 70, 57, 149, 150, 58, 15, 68, 73, 74 | , ⊢  |
| | : , : , : , : , : , :  |
| 8 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_not_eq_zero |
| 9 | instantiation | 107 | ⊢  |
| | : , :  |
| 10 | instantiation | 162, 124, 16 | ⊢  |
| | : , : , :  |
| 11 | instantiation | 17, 89, 24 | , ⊢  |
| | :  |
| 12 | instantiation | 136, 18 | , ⊢  |
| | : , : , :  |
| 13 | instantiation | 114, 19, 20 | , , ⊢  |
| | : , : , :  |
| 14 | instantiation | 64, 68, 73 | ⊢  |
| | : , :  |
| 15 | instantiation | 107 | ⊢  |
| | : , :  |
| 16 | instantiation | 162, 133, 32 | ⊢  |
| | : , : , :  |
| 17 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.nonzero_complex_is_complex_nonzero |
| 18 | instantiation | 21, 22, 89, 106, 23, 24, 25* | , ⊢  |
| | : , : , :  |
| 19 | instantiation | 114, 26, 27 | , , ⊢  |
| | : , : , :  |
| 20 | instantiation | 114, 28, 29 | , , ⊢  |
| | : , : , :  |
| 21 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.real_power_of_product |
| 22 | instantiation | 162, 155, 30 | ⊢  |
| | : , : , :  |
| 23 | instantiation | 31, 32 | ⊢  |
| | :  |
| 24 | assumption | | ⊢  |
| 25 | instantiation | 33, 112, 111, 154, 34*, 35* | ⊢  |
| | : , : , :  |
| 26 | instantiation | 114, 36, 37 | , , ⊢  |
| | : , : , :  |
| 27 | instantiation | 52, 38, 39, 40 | , , ⊢  |
| | : , : , : , :  |
| 28 | instantiation | 56, 150, 149, 71, 118, 73, 74, 75, 76 | , , ⊢  |
| | : , : , : , : , : , : , :  |
| 29 | instantiation | 65, 57, 149, 164, 58, 41, 42, 118, 75, 73, 74, 76, 43* | , , ⊢  |
| | : , : , : , : , : , :  |
| 30 | instantiation | 162, 158, 44 | ⊢  |
| | : , : , :  |
| 31 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.nonzero_if_in_rational_nonzero |
| 32 | instantiation | 162, 45, 63 | ⊢  |
| | : , : , :  |
| 33 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.neg_power_of_quotient |
| 34 | instantiation | 46, 147 | ⊢  |
| | :  |
| 35 | instantiation | 46, 108 | ⊢  |
| | :  |
| 36 | instantiation | 70, 57, 164, 150, 58, 48, 68, 73, 74, 47 | , , ⊢  |
| | : , : , : , : , : , :  |
| 37 | instantiation | 70, 164, 149, 57, 48, 49, 58, 68, 73, 74, 67, 76 | , , ⊢  |
| | : , : , : , : , : , :  |
| 38 | instantiation | 50, 57, 164, 150, 58, 51, 68, 73, 74, 67, 76 | , , ⊢  |
| | : , : , : , : , : , : , :  |
| 39 | instantiation | 52, 53, 54, 55 | , , ⊢  |
| | : , : , : , :  |
| 40 | instantiation | 56, 57, 164, 150, 58, 59, 73, 74, 75, 118, 76 | , , ⊢  |
| | : , : , : , : , : , : , :  |
| 41 | instantiation | 107 | ⊢  |
| | : , :  |
| 42 | instantiation | 77 | ⊢  |
| | : , : , :  |
| 43 | instantiation | 60, 118, 110, 113, 112, 104*, 61* | ⊢  |
| | : , : , : , :  |
| 44 | instantiation | 162, 62, 63 | ⊢  |
| | : , : , :  |
| 45 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational_nonzero |
| 46 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
| 47 | instantiation | 64, 67, 76 | ⊢  |
| | : , :  |
| 48 | instantiation | 77 | ⊢  |
| | : , : , :  |
| 49 | instantiation | 107 | ⊢  |
| | : , :  |
| 50 | theorem | | ⊢  |
| | proveit.numbers.multiplication.rightward_commutation |
| 51 | instantiation | 77 | ⊢  |
| | : , : , :  |
| 52 | theorem | | ⊢  |
| | proveit.logic.equality.four_chain_transitivity |
| 53 | instantiation | 65, 149, 150, 71, 66, 73, 74, 67, 68, 76 | , , ⊢  |
| | : , : , : , : , : , :  |
| 54 | instantiation | 136, 69 | ⊢  |
| | : , : , :  |
| 55 | instantiation | 70, 149, 150, 71, 72, 73, 74, 75, 118, 76 | , , ⊢  |
| | : , : , : , : , : , :  |
| 56 | theorem | | ⊢  |
| | proveit.numbers.multiplication.leftward_commutation |
| 57 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 58 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 59 | instantiation | 77 | ⊢  |
| | : , : , :  |
| 60 | theorem | | ⊢  |
| | proveit.numbers.division.prod_of_fracs |
| 61 | instantiation | 114, 78, 79 | ⊢  |
| | : , : , :  |
| 62 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational |
| 63 | instantiation | 80, 81, 82 | ⊢  |
| | : , :  |
| 64 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_complex_closure_bin |
| 65 | theorem | | ⊢  |
| | proveit.numbers.multiplication.association |
| 66 | instantiation | 107 | ⊢  |
| | : , :  |
| 67 | instantiation | 86, 147, 108, 87 | ⊢  |
| | : , :  |
| 68 | instantiation | 86, 118, 147, 83 | ⊢  |
| | : , :  |
| 69 | instantiation | 101, 84, 85 | ⊢  |
| | : , : , :  |
| 70 | theorem | | ⊢  |
| | proveit.numbers.multiplication.disassociation |
| 71 | instantiation | 107 | ⊢  |
| | : , :  |
| 72 | instantiation | 107 | ⊢  |
| | : , :  |
| 73 | assumption | | ⊢  |
| 74 | assumption | | ⊢  |
| 75 | instantiation | 86, 110, 108, 87 | ⊢  |
| | : , :  |
| 76 | instantiation | 88, 89, 90 | ⊢  |
| | : , :  |
| 77 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
| 78 | instantiation | 91, 149, 92, 93, 94, 95 | ⊢  |
| | : , : , : , :  |
| 79 | instantiation | 96, 112, 113, 108, 97*, 98*, 99* | ⊢  |
| | : , : , :  |
| 80 | theorem | | ⊢  |
| | proveit.numbers.division.div_rational_pos_closure |
| 81 | instantiation | 162, 100, 152 | ⊢  |
| | : , : , :  |
| 82 | instantiation | 162, 100, 151 | ⊢  |
| | : , : , :  |
| 83 | instantiation | 105, 151 | ⊢  |
| | :  |
| 84 | instantiation | 101, 102, 103 | ⊢  |
| | : , : , :  |
| 85 | instantiation | 136, 104 | ⊢  |
| | : , : , :  |
| 86 | theorem | | ⊢  |
| | proveit.numbers.division.div_complex_closure |
| 87 | instantiation | 105, 152 | ⊢  |
| | :  |
| 88 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.exp_complex_closure |
| 89 | assumption | | ⊢  |
| 90 | instantiation | 162, 155, 106 | ⊢  |
| | : , : , :  |
| 91 | axiom | | ⊢  |
| | proveit.core_expr_types.operations.operands_substitution |
| 92 | instantiation | 107 | ⊢  |
| | : , :  |
| 93 | instantiation | 107 | ⊢  |
| | : , :  |
| 94 | instantiation | 146, 118 | ⊢  |
| | :  |
| 95 | instantiation | 145, 108 | ⊢  |
| | :  |
| 96 | theorem | | ⊢  |
| | proveit.numbers.division.frac_cancel_left |
| 97 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.mult_2_2 |
| 98 | instantiation | 146, 108 | ⊢  |
| | :  |
| 99 | instantiation | 117, 108 | ⊢  |
| | :  |
| 100 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.nat_pos_within_rational_pos |
| 101 | theorem | | ⊢  |
| | proveit.logic.equality.sub_right_side_into |
| 102 | instantiation | 109, 110, 118, 111, 112, 113 | ⊢  |
| | : , : , : , : , :  |
| 103 | instantiation | 114, 115, 116 | ⊢  |
| | : , : , :  |
| 104 | instantiation | 117, 118 | ⊢  |
| | :  |
| 105 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
| 106 | instantiation | 119, 121 | ⊢  |
| | :  |
| 107 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 108 | instantiation | 162, 155, 120 | ⊢  |
| | : , : , :  |
| 109 | theorem | | ⊢  |
| | proveit.numbers.division.mult_frac_cancel_numer_left |
| 110 | instantiation | 162, 155, 121 | ⊢  |
| | : , : , :  |
| 111 | instantiation | 162, 124, 122 | ⊢  |
| | : , : , :  |
| 112 | instantiation | 162, 124, 123 | ⊢  |
| | : , : , :  |
| 113 | instantiation | 162, 124, 125 | ⊢  |
| | : , : , :  |
| 114 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 115 | instantiation | 136, 126 | ⊢  |
| | : , : , :  |
| 116 | instantiation | 136, 127 | ⊢  |
| | : , : , :  |
| 117 | theorem | | ⊢  |
| | proveit.numbers.division.frac_one_denom |
| 118 | instantiation | 162, 155, 128 | ⊢  |
| | : , : , :  |
| 119 | theorem | | ⊢  |
| | proveit.numbers.negation.real_closure |
| 120 | instantiation | 162, 158, 129 | ⊢  |
| | : , : , :  |
| 121 | instantiation | 162, 158, 130 | ⊢  |
| | : , : , :  |
| 122 | instantiation | 162, 133, 131 | ⊢  |
| | : , : , :  |
| 123 | instantiation | 162, 133, 132 | ⊢  |
| | : , : , :  |
| 124 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
| 125 | instantiation | 162, 133, 134 | ⊢  |
| | : , : , :  |
| 126 | instantiation | 136, 135 | ⊢  |
| | : , : , :  |
| 127 | instantiation | 136, 137 | ⊢  |
| | : , : , :  |
| 128 | instantiation | 162, 158, 138 | ⊢  |
| | : , : , :  |
| 129 | instantiation | 162, 160, 139 | ⊢  |
| | : , : , :  |
| 130 | instantiation | 162, 160, 140 | ⊢  |
| | : , : , :  |
| 131 | instantiation | 162, 143, 141 | ⊢  |
| | : , : , :  |
| 132 | instantiation | 162, 143, 142 | ⊢  |
| | : , : , :  |
| 133 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
| 134 | instantiation | 162, 143, 144 | ⊢  |
| | : , : , :  |
| 135 | instantiation | 145, 147 | ⊢  |
| | :  |
| 136 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 137 | instantiation | 146, 147 | ⊢  |
| | :  |
| 138 | instantiation | 162, 160, 148 | ⊢  |
| | : , : , :  |
| 139 | instantiation | 162, 163, 149 | ⊢  |
| | : , : , :  |
| 140 | instantiation | 162, 163, 150 | ⊢  |
| | : , : , :  |
| 141 | instantiation | 162, 153, 151 | ⊢  |
| | : , : , :  |
| 142 | instantiation | 162, 153, 152 | ⊢  |
| | : , : , :  |
| 143 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
| 144 | instantiation | 162, 153, 154 | ⊢  |
| | : , : , :  |
| 145 | theorem | | ⊢  |
| | proveit.numbers.multiplication.elim_one_left |
| 146 | theorem | | ⊢  |
| | proveit.numbers.multiplication.elim_one_right |
| 147 | instantiation | 162, 155, 156 | ⊢  |
| | : , : , :  |
| 148 | instantiation | 162, 163, 157 | ⊢  |
| | : , : , :  |
| 149 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 150 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 151 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 152 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 153 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
| 154 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat1 |
| 155 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 156 | instantiation | 162, 158, 159 | ⊢  |
| | : , : , :  |
| 157 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| 158 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 159 | instantiation | 162, 160, 161 | ⊢  |
| | : , : , :  |
| 160 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 161 | instantiation | 162, 163, 164 | ⊢  |
| | : , : , :  |
| 162 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 163 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 164 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |
| *equality replacement requirements |