| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3 | , , ⊢  |
| | : , : , :  |
| 1 | reference | 58 | ⊢  |
| 2 | instantiation | 58, 4, 5 | , , ⊢  |
| | : , : , :  |
| 3 | instantiation | 14, 6, 7, 8 | , , ⊢  |
| | : , : , : , :  |
| 4 | instantiation | 28, 19, 107, 93, 20, 10, 26, 31, 32, 9 | , , ⊢  |
| | : , : , : , : , : , :  |
| 5 | instantiation | 28, 107, 83, 19, 10, 11, 20, 26, 31, 32, 25, 34 | , , ⊢  |
| | : , : , : , : , : , :  |
| 6 | instantiation | 12, 19, 107, 93, 20, 13, 26, 31, 32, 25, 34 | , , ⊢  |
| | : , : , : , : , : , : , :  |
| 7 | instantiation | 14, 15, 16, 17 | , , ⊢  |
| | : , : , : , :  |
| 8 | instantiation | 18, 19, 107, 93, 20, 21, 31, 32, 33, 62, 34 | , , ⊢  |
| | : , : , : , : , : , : , :  |
| 9 | instantiation | 22, 25, 34 | ⊢  |
| | : , :  |
| 10 | instantiation | 35 | ⊢  |
| | : , : , :  |
| 11 | instantiation | 39 | ⊢  |
| | : , :  |
| 12 | theorem | | ⊢  |
| | proveit.numbers.multiplication.rightward_commutation |
| 13 | instantiation | 35 | ⊢  |
| | : , : , :  |
| 14 | theorem | | ⊢  |
| | proveit.logic.equality.four_chain_transitivity |
| 15 | instantiation | 23, 83, 93, 29, 24, 31, 32, 25, 26, 34 | , , ⊢  |
| | : , : , : , : , : , :  |
| 16 | instantiation | 80, 27 | ⊢  |
| | : , : , :  |
| 17 | instantiation | 28, 83, 93, 29, 30, 31, 32, 33, 62, 34 | , , ⊢  |
| | : , : , : , : , : , :  |
| 18 | theorem | | ⊢  |
| | proveit.numbers.multiplication.leftward_commutation |
| 19 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 20 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 21 | instantiation | 35 | ⊢  |
| | : , : , :  |
| 22 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_complex_closure_bin |
| 23 | theorem | | ⊢  |
| | proveit.numbers.multiplication.association |
| 24 | instantiation | 39 | ⊢  |
| | : , :  |
| 25 | instantiation | 40, 91, 41, 42 | ⊢  |
| | : , :  |
| 26 | instantiation | 40, 62, 91, 36 | ⊢  |
| | : , :  |
| 27 | instantiation | 46, 37, 38 | ⊢  |
| | : , : , :  |
| 28 | theorem | | ⊢  |
| | proveit.numbers.multiplication.disassociation |
| 29 | instantiation | 39 | ⊢  |
| | : , :  |
| 30 | instantiation | 39 | ⊢  |
| | : , :  |
| 31 | assumption | | ⊢  |
| 32 | assumption | | ⊢  |
| 33 | instantiation | 40, 54, 41, 42 | ⊢  |
| | : , :  |
| 34 | instantiation | 43, 44, 45 | ⊢  |
| | : , :  |
| 35 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
| 36 | instantiation | 51, 94 | ⊢  |
| | :  |
| 37 | instantiation | 46, 47, 48 | ⊢  |
| | : , : , :  |
| 38 | instantiation | 80, 49 | ⊢  |
| | : , : , :  |
| 39 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 40 | theorem | | ⊢  |
| | proveit.numbers.division.div_complex_closure |
| 41 | instantiation | 105, 98, 50 | ⊢  |
| | : , : , :  |
| 42 | instantiation | 51, 95 | ⊢  |
| | :  |
| 43 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.exp_complex_closure |
| 44 | assumption | | ⊢  |
| 45 | instantiation | 105, 98, 52 | ⊢  |
| | : , : , :  |
| 46 | theorem | | ⊢  |
| | proveit.logic.equality.sub_right_side_into |
| 47 | instantiation | 53, 54, 62, 55, 56, 57 | ⊢  |
| | : , : , : , : , :  |
| 48 | instantiation | 58, 59, 60 | ⊢  |
| | : , : , :  |
| 49 | instantiation | 61, 62 | ⊢  |
| | :  |
| 50 | instantiation | 105, 101, 63 | ⊢  |
| | : , : , :  |
| 51 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
| 52 | instantiation | 64, 65 | ⊢  |
| | :  |
| 53 | theorem | | ⊢  |
| | proveit.numbers.division.mult_frac_cancel_numer_left |
| 54 | instantiation | 105, 98, 65 | ⊢  |
| | : , : , :  |
| 55 | instantiation | 105, 68, 66 | ⊢  |
| | : , : , :  |
| 56 | instantiation | 105, 68, 67 | ⊢  |
| | : , : , :  |
| 57 | instantiation | 105, 68, 69 | ⊢  |
| | : , : , :  |
| 58 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 59 | instantiation | 80, 70 | ⊢  |
| | : , : , :  |
| 60 | instantiation | 80, 71 | ⊢  |
| | : , : , :  |
| 61 | theorem | | ⊢  |
| | proveit.numbers.division.frac_one_denom |
| 62 | instantiation | 105, 98, 72 | ⊢  |
| | : , : , :  |
| 63 | instantiation | 105, 103, 73 | ⊢  |
| | : , : , :  |
| 64 | theorem | | ⊢  |
| | proveit.numbers.negation.real_closure |
| 65 | instantiation | 105, 101, 74 | ⊢  |
| | : , : , :  |
| 66 | instantiation | 105, 77, 75 | ⊢  |
| | : , : , :  |
| 67 | instantiation | 105, 77, 76 | ⊢  |
| | : , : , :  |
| 68 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
| 69 | instantiation | 105, 77, 78 | ⊢  |
| | : , : , :  |
| 70 | instantiation | 80, 79 | ⊢  |
| | : , : , :  |
| 71 | instantiation | 80, 81 | ⊢  |
| | : , : , :  |
| 72 | instantiation | 105, 101, 82 | ⊢  |
| | : , : , :  |
| 73 | instantiation | 105, 106, 83 | ⊢  |
| | : , : , :  |
| 74 | instantiation | 105, 103, 84 | ⊢  |
| | : , : , :  |
| 75 | instantiation | 105, 87, 85 | ⊢  |
| | : , : , :  |
| 76 | instantiation | 105, 87, 86 | ⊢  |
| | : , : , :  |
| 77 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
| 78 | instantiation | 105, 87, 88 | ⊢  |
| | : , : , :  |
| 79 | instantiation | 89, 91 | ⊢  |
| | :  |
| 80 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 81 | instantiation | 90, 91 | ⊢  |
| | :  |
| 82 | instantiation | 105, 103, 92 | ⊢  |
| | : , : , :  |
| 83 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 84 | instantiation | 105, 106, 93 | ⊢  |
| | : , : , :  |
| 85 | instantiation | 105, 96, 94 | ⊢  |
| | : , : , :  |
| 86 | instantiation | 105, 96, 95 | ⊢  |
| | : , : , :  |
| 87 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
| 88 | instantiation | 105, 96, 97 | ⊢  |
| | : , : , :  |
| 89 | theorem | | ⊢  |
| | proveit.numbers.multiplication.elim_one_left |
| 90 | theorem | | ⊢  |
| | proveit.numbers.multiplication.elim_one_right |
| 91 | instantiation | 105, 98, 99 | ⊢  |
| | : , : , :  |
| 92 | instantiation | 105, 106, 100 | ⊢  |
| | : , : , :  |
| 93 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 94 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 95 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 96 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
| 97 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat1 |
| 98 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 99 | instantiation | 105, 101, 102 | ⊢  |
| | : , : , :  |
| 100 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| 101 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 102 | instantiation | 105, 103, 104 | ⊢  |
| | : , : , :  |
| 103 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 104 | instantiation | 105, 106, 107 | ⊢  |
| | : , : , :  |
| 105 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 106 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 107 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |