| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | , , ⊢ |
| : , : , : |
1 | reference | 58 | ⊢ |
2 | instantiation | 58, 4, 5 | , , ⊢ |
| : , : , : |
3 | instantiation | 14, 6, 7, 8 | , , ⊢ |
| : , : , : , : |
4 | instantiation | 28, 19, 107, 93, 20, 10, 26, 31, 32, 9 | , , ⊢ |
| : , : , : , : , : , : |
5 | instantiation | 28, 107, 83, 19, 10, 11, 20, 26, 31, 32, 25, 34 | , , ⊢ |
| : , : , : , : , : , : |
6 | instantiation | 12, 19, 107, 93, 20, 13, 26, 31, 32, 25, 34 | , , ⊢ |
| : , : , : , : , : , : , : |
7 | instantiation | 14, 15, 16, 17 | , , ⊢ |
| : , : , : , : |
8 | instantiation | 18, 19, 107, 93, 20, 21, 31, 32, 33, 62, 34 | , , ⊢ |
| : , : , : , : , : , : , : |
9 | instantiation | 22, 25, 34 | ⊢ |
| : , : |
10 | instantiation | 35 | ⊢ |
| : , : , : |
11 | instantiation | 39 | ⊢ |
| : , : |
12 | theorem | | ⊢ |
| proveit.numbers.multiplication.rightward_commutation |
13 | instantiation | 35 | ⊢ |
| : , : , : |
14 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
15 | instantiation | 23, 83, 93, 29, 24, 31, 32, 25, 26, 34 | , , ⊢ |
| : , : , : , : , : , : |
16 | instantiation | 80, 27 | ⊢ |
| : , : , : |
17 | instantiation | 28, 83, 93, 29, 30, 31, 32, 33, 62, 34 | , , ⊢ |
| : , : , : , : , : , : |
18 | theorem | | ⊢ |
| proveit.numbers.multiplication.leftward_commutation |
19 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
20 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
21 | instantiation | 35 | ⊢ |
| : , : , : |
22 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_complex_closure_bin |
23 | theorem | | ⊢ |
| proveit.numbers.multiplication.association |
24 | instantiation | 39 | ⊢ |
| : , : |
25 | instantiation | 40, 91, 41, 42 | ⊢ |
| : , : |
26 | instantiation | 40, 62, 91, 36 | ⊢ |
| : , : |
27 | instantiation | 46, 37, 38 | ⊢ |
| : , : , : |
28 | theorem | | ⊢ |
| proveit.numbers.multiplication.disassociation |
29 | instantiation | 39 | ⊢ |
| : , : |
30 | instantiation | 39 | ⊢ |
| : , : |
31 | assumption | | ⊢ |
32 | assumption | | ⊢ |
33 | instantiation | 40, 54, 41, 42 | ⊢ |
| : , : |
34 | instantiation | 43, 44, 45 | ⊢ |
| : , : |
35 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
36 | instantiation | 51, 94 | ⊢ |
| : |
37 | instantiation | 46, 47, 48 | ⊢ |
| : , : , : |
38 | instantiation | 80, 49 | ⊢ |
| : , : , : |
39 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
40 | theorem | | ⊢ |
| proveit.numbers.division.div_complex_closure |
41 | instantiation | 105, 98, 50 | ⊢ |
| : , : , : |
42 | instantiation | 51, 95 | ⊢ |
| : |
43 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_complex_closure |
44 | assumption | | ⊢ |
45 | instantiation | 105, 98, 52 | ⊢ |
| : , : , : |
46 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
47 | instantiation | 53, 54, 62, 55, 56, 57 | ⊢ |
| : , : , : , : , : |
48 | instantiation | 58, 59, 60 | ⊢ |
| : , : , : |
49 | instantiation | 61, 62 | ⊢ |
| : |
50 | instantiation | 105, 101, 63 | ⊢ |
| : , : , : |
51 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
52 | instantiation | 64, 65 | ⊢ |
| : |
53 | theorem | | ⊢ |
| proveit.numbers.division.mult_frac_cancel_numer_left |
54 | instantiation | 105, 98, 65 | ⊢ |
| : , : , : |
55 | instantiation | 105, 68, 66 | ⊢ |
| : , : , : |
56 | instantiation | 105, 68, 67 | ⊢ |
| : , : , : |
57 | instantiation | 105, 68, 69 | ⊢ |
| : , : , : |
58 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
59 | instantiation | 80, 70 | ⊢ |
| : , : , : |
60 | instantiation | 80, 71 | ⊢ |
| : , : , : |
61 | theorem | | ⊢ |
| proveit.numbers.division.frac_one_denom |
62 | instantiation | 105, 98, 72 | ⊢ |
| : , : , : |
63 | instantiation | 105, 103, 73 | ⊢ |
| : , : , : |
64 | theorem | | ⊢ |
| proveit.numbers.negation.real_closure |
65 | instantiation | 105, 101, 74 | ⊢ |
| : , : , : |
66 | instantiation | 105, 77, 75 | ⊢ |
| : , : , : |
67 | instantiation | 105, 77, 76 | ⊢ |
| : , : , : |
68 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
69 | instantiation | 105, 77, 78 | ⊢ |
| : , : , : |
70 | instantiation | 80, 79 | ⊢ |
| : , : , : |
71 | instantiation | 80, 81 | ⊢ |
| : , : , : |
72 | instantiation | 105, 101, 82 | ⊢ |
| : , : , : |
73 | instantiation | 105, 106, 83 | ⊢ |
| : , : , : |
74 | instantiation | 105, 103, 84 | ⊢ |
| : , : , : |
75 | instantiation | 105, 87, 85 | ⊢ |
| : , : , : |
76 | instantiation | 105, 87, 86 | ⊢ |
| : , : , : |
77 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
78 | instantiation | 105, 87, 88 | ⊢ |
| : , : , : |
79 | instantiation | 89, 91 | ⊢ |
| : |
80 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
81 | instantiation | 90, 91 | ⊢ |
| : |
82 | instantiation | 105, 103, 92 | ⊢ |
| : , : , : |
83 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
84 | instantiation | 105, 106, 93 | ⊢ |
| : , : , : |
85 | instantiation | 105, 96, 94 | ⊢ |
| : , : , : |
86 | instantiation | 105, 96, 95 | ⊢ |
| : , : , : |
87 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
88 | instantiation | 105, 96, 97 | ⊢ |
| : , : , : |
89 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_left |
90 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_right |
91 | instantiation | 105, 98, 99 | ⊢ |
| : , : , : |
92 | instantiation | 105, 106, 100 | ⊢ |
| : , : , : |
93 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
94 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
95 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
96 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
97 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
98 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
99 | instantiation | 105, 101, 102 | ⊢ |
| : , : , : |
100 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
101 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
102 | instantiation | 105, 103, 104 | ⊢ |
| : , : , : |
103 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
104 | instantiation | 105, 106, 107 | ⊢ |
| : , : , : |
105 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
106 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
107 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |