| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | , , ⊢  |
| : , : , :  |
1 | reference | 77 | ⊢  |
2 | instantiation | 77, 4, 5 | , , ⊢  |
| : , : , :  |
3 | instantiation | 77, 6, 7 | , , ⊢  |
| : , : , :  |
4 | instantiation | 77, 8, 9 | , , ⊢  |
| : , : , :  |
5 | instantiation | 21, 10, 11, 12 | , , ⊢  |
| : , : , : , :  |
6 | instantiation | 25, 113, 112, 38, 81, 40, 41, 42, 43 | , , ⊢  |
| : , : , : , : , : , : , :  |
7 | instantiation | 32, 26, 112, 127, 27, 13, 14, 81, 42, 40, 41, 43, 15* | , , ⊢  |
| : , : , : , : , : , :  |
8 | instantiation | 37, 26, 127, 113, 27, 17, 35, 40, 41, 16 | , , ⊢  |
| : , : , : , : , : , :  |
9 | instantiation | 37, 127, 112, 26, 17, 18, 27, 35, 40, 41, 34, 43 | , , ⊢  |
| : , : , : , : , : , :  |
10 | instantiation | 19, 26, 127, 113, 27, 20, 35, 40, 41, 34, 43 | , , ⊢  |
| : , : , : , : , : , : , :  |
11 | instantiation | 21, 22, 23, 24 | , , ⊢  |
| : , : , : , :  |
12 | instantiation | 25, 26, 127, 113, 27, 28, 40, 41, 42, 81, 43 | , , ⊢  |
| : , : , : , : , : , : , :  |
13 | instantiation | 70 | ⊢  |
| : , :  |
14 | instantiation | 44 | ⊢  |
| : , : , :  |
15 | instantiation | 29, 81, 73, 76, 75, 67*, 30* | ⊢  |
| : , : , : , :  |
16 | instantiation | 31, 34, 43 | ⊢  |
| : , :  |
17 | instantiation | 44 | ⊢  |
| : , : , :  |
18 | instantiation | 70 | ⊢  |
| : , :  |
19 | theorem | | ⊢  |
| proveit.numbers.multiplication.rightward_commutation |
20 | instantiation | 44 | ⊢  |
| : , : , :  |
21 | theorem | | ⊢  |
| proveit.logic.equality.four_chain_transitivity |
22 | instantiation | 32, 112, 113, 38, 33, 40, 41, 34, 35, 43 | , , ⊢  |
| : , : , : , : , : , :  |
23 | instantiation | 99, 36 | ⊢  |
| : , : , :  |
24 | instantiation | 37, 112, 113, 38, 39, 40, 41, 42, 81, 43 | , , ⊢  |
| : , : , : , : , : , :  |
25 | theorem | | ⊢  |
| proveit.numbers.multiplication.leftward_commutation |
26 | axiom | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
27 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
28 | instantiation | 44 | ⊢  |
| : , : , :  |
29 | theorem | | ⊢  |
| proveit.numbers.division.prod_of_fracs |
30 | instantiation | 77, 45, 46 | ⊢  |
| : , : , :  |
31 | theorem | | ⊢  |
| proveit.numbers.multiplication.mult_complex_closure_bin |
32 | theorem | | ⊢  |
| proveit.numbers.multiplication.association |
33 | instantiation | 70 | ⊢  |
| : , :  |
34 | instantiation | 50, 110, 71, 51 | ⊢  |
| : , :  |
35 | instantiation | 50, 81, 110, 47 | ⊢  |
| : , :  |
36 | instantiation | 64, 48, 49 | ⊢  |
| : , : , :  |
37 | theorem | | ⊢  |
| proveit.numbers.multiplication.disassociation |
38 | instantiation | 70 | ⊢  |
| : , :  |
39 | instantiation | 70 | ⊢  |
| : , :  |
40 | assumption | | ⊢  |
41 | assumption | | ⊢  |
42 | instantiation | 50, 73, 71, 51 | ⊢  |
| : , :  |
43 | instantiation | 52, 53, 54 | ⊢  |
| : , :  |
44 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
45 | instantiation | 55, 112, 56, 57, 58, 59 | ⊢  |
| : , : , : , :  |
46 | instantiation | 60, 75, 76, 71, 61*, 62*, 63* | ⊢  |
| : , : , :  |
47 | instantiation | 68, 114 | ⊢  |
| :  |
48 | instantiation | 64, 65, 66 | ⊢  |
| : , : , :  |
49 | instantiation | 99, 67 | ⊢  |
| : , : , :  |
50 | theorem | | ⊢  |
| proveit.numbers.division.div_complex_closure |
51 | instantiation | 68, 115 | ⊢  |
| :  |
52 | theorem | | ⊢  |
| proveit.numbers.exponentiation.exp_complex_closure |
53 | assumption | | ⊢  |
54 | instantiation | 125, 118, 69 | ⊢  |
| : , : , :  |
55 | axiom | | ⊢  |
| proveit.core_expr_types.operations.operands_substitution |
56 | instantiation | 70 | ⊢  |
| : , :  |
57 | instantiation | 70 | ⊢  |
| : , :  |
58 | instantiation | 109, 81 | ⊢  |
| :  |
59 | instantiation | 108, 71 | ⊢  |
| :  |
60 | theorem | | ⊢  |
| proveit.numbers.division.frac_cancel_left |
61 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.mult_2_2 |
62 | instantiation | 109, 71 | ⊢  |
| :  |
63 | instantiation | 80, 71 | ⊢  |
| :  |
64 | theorem | | ⊢  |
| proveit.logic.equality.sub_right_side_into |
65 | instantiation | 72, 73, 81, 74, 75, 76 | ⊢  |
| : , : , : , : , :  |
66 | instantiation | 77, 78, 79 | ⊢  |
| : , : , :  |
67 | instantiation | 80, 81 | ⊢  |
| :  |
68 | theorem | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
69 | instantiation | 82, 84 | ⊢  |
| :  |
70 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
71 | instantiation | 125, 118, 83 | ⊢  |
| : , : , :  |
72 | theorem | | ⊢  |
| proveit.numbers.division.mult_frac_cancel_numer_left |
73 | instantiation | 125, 118, 84 | ⊢  |
| : , : , :  |
74 | instantiation | 125, 87, 85 | ⊢  |
| : , : , :  |
75 | instantiation | 125, 87, 86 | ⊢  |
| : , : , :  |
76 | instantiation | 125, 87, 88 | ⊢  |
| : , : , :  |
77 | axiom | | ⊢  |
| proveit.logic.equality.equals_transitivity |
78 | instantiation | 99, 89 | ⊢  |
| : , : , :  |
79 | instantiation | 99, 90 | ⊢  |
| : , : , :  |
80 | theorem | | ⊢  |
| proveit.numbers.division.frac_one_denom |
81 | instantiation | 125, 118, 91 | ⊢  |
| : , : , :  |
82 | theorem | | ⊢  |
| proveit.numbers.negation.real_closure |
83 | instantiation | 125, 121, 92 | ⊢  |
| : , : , :  |
84 | instantiation | 125, 121, 93 | ⊢  |
| : , : , :  |
85 | instantiation | 125, 96, 94 | ⊢  |
| : , : , :  |
86 | instantiation | 125, 96, 95 | ⊢  |
| : , : , :  |
87 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
88 | instantiation | 125, 96, 97 | ⊢  |
| : , : , :  |
89 | instantiation | 99, 98 | ⊢  |
| : , : , :  |
90 | instantiation | 99, 100 | ⊢  |
| : , : , :  |
91 | instantiation | 125, 121, 101 | ⊢  |
| : , : , :  |
92 | instantiation | 125, 123, 102 | ⊢  |
| : , : , :  |
93 | instantiation | 125, 123, 103 | ⊢  |
| : , : , :  |
94 | instantiation | 125, 106, 104 | ⊢  |
| : , : , :  |
95 | instantiation | 125, 106, 105 | ⊢  |
| : , : , :  |
96 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
97 | instantiation | 125, 106, 107 | ⊢  |
| : , : , :  |
98 | instantiation | 108, 110 | ⊢  |
| :  |
99 | axiom | | ⊢  |
| proveit.logic.equality.substitution |
100 | instantiation | 109, 110 | ⊢  |
| :  |
101 | instantiation | 125, 123, 111 | ⊢  |
| : , : , :  |
102 | instantiation | 125, 126, 112 | ⊢  |
| : , : , :  |
103 | instantiation | 125, 126, 113 | ⊢  |
| : , : , :  |
104 | instantiation | 125, 116, 114 | ⊢  |
| : , : , :  |
105 | instantiation | 125, 116, 115 | ⊢  |
| : , : , :  |
106 | theorem | | ⊢  |
| proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
107 | instantiation | 125, 116, 117 | ⊢  |
| : , : , :  |
108 | theorem | | ⊢  |
| proveit.numbers.multiplication.elim_one_left |
109 | theorem | | ⊢  |
| proveit.numbers.multiplication.elim_one_right |
110 | instantiation | 125, 118, 119 | ⊢  |
| : , : , :  |
111 | instantiation | 125, 126, 120 | ⊢  |
| : , : , :  |
112 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat2 |
113 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat1 |
114 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat3 |
115 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat2 |
116 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
117 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat1 |
118 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
119 | instantiation | 125, 121, 122 | ⊢  |
| : , : , :  |
120 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat4 |
121 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
122 | instantiation | 125, 123, 124 | ⊢  |
| : , : , :  |
123 | theorem | | ⊢  |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
124 | instantiation | 125, 126, 127 | ⊢  |
| : , : , :  |
125 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
126 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nat_within_int |
127 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat3 |
*equality replacement requirements |