| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3 | , , ⊢  |
| | : , : , :  |
| 1 | reference | 77 | ⊢  |
| 2 | instantiation | 77, 4, 5 | , , ⊢  |
| | : , : , :  |
| 3 | instantiation | 77, 6, 7 | , , ⊢  |
| | : , : , :  |
| 4 | instantiation | 77, 8, 9 | , , ⊢  |
| | : , : , :  |
| 5 | instantiation | 21, 10, 11, 12 | , , ⊢  |
| | : , : , : , :  |
| 6 | instantiation | 25, 113, 112, 38, 81, 40, 41, 42, 43 | , , ⊢  |
| | : , : , : , : , : , : , :  |
| 7 | instantiation | 32, 26, 112, 127, 27, 13, 14, 81, 42, 40, 41, 43, 15* | , , ⊢  |
| | : , : , : , : , : , :  |
| 8 | instantiation | 37, 26, 127, 113, 27, 17, 35, 40, 41, 16 | , , ⊢  |
| | : , : , : , : , : , :  |
| 9 | instantiation | 37, 127, 112, 26, 17, 18, 27, 35, 40, 41, 34, 43 | , , ⊢  |
| | : , : , : , : , : , :  |
| 10 | instantiation | 19, 26, 127, 113, 27, 20, 35, 40, 41, 34, 43 | , , ⊢  |
| | : , : , : , : , : , : , :  |
| 11 | instantiation | 21, 22, 23, 24 | , , ⊢  |
| | : , : , : , :  |
| 12 | instantiation | 25, 26, 127, 113, 27, 28, 40, 41, 42, 81, 43 | , , ⊢  |
| | : , : , : , : , : , : , :  |
| 13 | instantiation | 70 | ⊢  |
| | : , :  |
| 14 | instantiation | 44 | ⊢  |
| | : , : , :  |
| 15 | instantiation | 29, 81, 73, 76, 75, 67*, 30* | ⊢  |
| | : , : , : , :  |
| 16 | instantiation | 31, 34, 43 | ⊢  |
| | : , :  |
| 17 | instantiation | 44 | ⊢  |
| | : , : , :  |
| 18 | instantiation | 70 | ⊢  |
| | : , :  |
| 19 | theorem | | ⊢  |
| | proveit.numbers.multiplication.rightward_commutation |
| 20 | instantiation | 44 | ⊢  |
| | : , : , :  |
| 21 | theorem | | ⊢  |
| | proveit.logic.equality.four_chain_transitivity |
| 22 | instantiation | 32, 112, 113, 38, 33, 40, 41, 34, 35, 43 | , , ⊢  |
| | : , : , : , : , : , :  |
| 23 | instantiation | 99, 36 | ⊢  |
| | : , : , :  |
| 24 | instantiation | 37, 112, 113, 38, 39, 40, 41, 42, 81, 43 | , , ⊢  |
| | : , : , : , : , : , :  |
| 25 | theorem | | ⊢  |
| | proveit.numbers.multiplication.leftward_commutation |
| 26 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 27 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 28 | instantiation | 44 | ⊢  |
| | : , : , :  |
| 29 | theorem | | ⊢  |
| | proveit.numbers.division.prod_of_fracs |
| 30 | instantiation | 77, 45, 46 | ⊢  |
| | : , : , :  |
| 31 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_complex_closure_bin |
| 32 | theorem | | ⊢  |
| | proveit.numbers.multiplication.association |
| 33 | instantiation | 70 | ⊢  |
| | : , :  |
| 34 | instantiation | 50, 110, 71, 51 | ⊢  |
| | : , :  |
| 35 | instantiation | 50, 81, 110, 47 | ⊢  |
| | : , :  |
| 36 | instantiation | 64, 48, 49 | ⊢  |
| | : , : , :  |
| 37 | theorem | | ⊢  |
| | proveit.numbers.multiplication.disassociation |
| 38 | instantiation | 70 | ⊢  |
| | : , :  |
| 39 | instantiation | 70 | ⊢  |
| | : , :  |
| 40 | assumption | | ⊢  |
| 41 | assumption | | ⊢  |
| 42 | instantiation | 50, 73, 71, 51 | ⊢  |
| | : , :  |
| 43 | instantiation | 52, 53, 54 | ⊢  |
| | : , :  |
| 44 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
| 45 | instantiation | 55, 112, 56, 57, 58, 59 | ⊢  |
| | : , : , : , :  |
| 46 | instantiation | 60, 75, 76, 71, 61*, 62*, 63* | ⊢  |
| | : , : , :  |
| 47 | instantiation | 68, 114 | ⊢  |
| | :  |
| 48 | instantiation | 64, 65, 66 | ⊢  |
| | : , : , :  |
| 49 | instantiation | 99, 67 | ⊢  |
| | : , : , :  |
| 50 | theorem | | ⊢  |
| | proveit.numbers.division.div_complex_closure |
| 51 | instantiation | 68, 115 | ⊢  |
| | :  |
| 52 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.exp_complex_closure |
| 53 | assumption | | ⊢  |
| 54 | instantiation | 125, 118, 69 | ⊢  |
| | : , : , :  |
| 55 | axiom | | ⊢  |
| | proveit.core_expr_types.operations.operands_substitution |
| 56 | instantiation | 70 | ⊢  |
| | : , :  |
| 57 | instantiation | 70 | ⊢  |
| | : , :  |
| 58 | instantiation | 109, 81 | ⊢  |
| | :  |
| 59 | instantiation | 108, 71 | ⊢  |
| | :  |
| 60 | theorem | | ⊢  |
| | proveit.numbers.division.frac_cancel_left |
| 61 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.mult_2_2 |
| 62 | instantiation | 109, 71 | ⊢  |
| | :  |
| 63 | instantiation | 80, 71 | ⊢  |
| | :  |
| 64 | theorem | | ⊢  |
| | proveit.logic.equality.sub_right_side_into |
| 65 | instantiation | 72, 73, 81, 74, 75, 76 | ⊢  |
| | : , : , : , : , :  |
| 66 | instantiation | 77, 78, 79 | ⊢  |
| | : , : , :  |
| 67 | instantiation | 80, 81 | ⊢  |
| | :  |
| 68 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
| 69 | instantiation | 82, 84 | ⊢  |
| | :  |
| 70 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 71 | instantiation | 125, 118, 83 | ⊢  |
| | : , : , :  |
| 72 | theorem | | ⊢  |
| | proveit.numbers.division.mult_frac_cancel_numer_left |
| 73 | instantiation | 125, 118, 84 | ⊢  |
| | : , : , :  |
| 74 | instantiation | 125, 87, 85 | ⊢  |
| | : , : , :  |
| 75 | instantiation | 125, 87, 86 | ⊢  |
| | : , : , :  |
| 76 | instantiation | 125, 87, 88 | ⊢  |
| | : , : , :  |
| 77 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 78 | instantiation | 99, 89 | ⊢  |
| | : , : , :  |
| 79 | instantiation | 99, 90 | ⊢  |
| | : , : , :  |
| 80 | theorem | | ⊢  |
| | proveit.numbers.division.frac_one_denom |
| 81 | instantiation | 125, 118, 91 | ⊢  |
| | : , : , :  |
| 82 | theorem | | ⊢  |
| | proveit.numbers.negation.real_closure |
| 83 | instantiation | 125, 121, 92 | ⊢  |
| | : , : , :  |
| 84 | instantiation | 125, 121, 93 | ⊢  |
| | : , : , :  |
| 85 | instantiation | 125, 96, 94 | ⊢  |
| | : , : , :  |
| 86 | instantiation | 125, 96, 95 | ⊢  |
| | : , : , :  |
| 87 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
| 88 | instantiation | 125, 96, 97 | ⊢  |
| | : , : , :  |
| 89 | instantiation | 99, 98 | ⊢  |
| | : , : , :  |
| 90 | instantiation | 99, 100 | ⊢  |
| | : , : , :  |
| 91 | instantiation | 125, 121, 101 | ⊢  |
| | : , : , :  |
| 92 | instantiation | 125, 123, 102 | ⊢  |
| | : , : , :  |
| 93 | instantiation | 125, 123, 103 | ⊢  |
| | : , : , :  |
| 94 | instantiation | 125, 106, 104 | ⊢  |
| | : , : , :  |
| 95 | instantiation | 125, 106, 105 | ⊢  |
| | : , : , :  |
| 96 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
| 97 | instantiation | 125, 106, 107 | ⊢  |
| | : , : , :  |
| 98 | instantiation | 108, 110 | ⊢  |
| | :  |
| 99 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 100 | instantiation | 109, 110 | ⊢  |
| | :  |
| 101 | instantiation | 125, 123, 111 | ⊢  |
| | : , : , :  |
| 102 | instantiation | 125, 126, 112 | ⊢  |
| | : , : , :  |
| 103 | instantiation | 125, 126, 113 | ⊢  |
| | : , : , :  |
| 104 | instantiation | 125, 116, 114 | ⊢  |
| | : , : , :  |
| 105 | instantiation | 125, 116, 115 | ⊢  |
| | : , : , :  |
| 106 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
| 107 | instantiation | 125, 116, 117 | ⊢  |
| | : , : , :  |
| 108 | theorem | | ⊢  |
| | proveit.numbers.multiplication.elim_one_left |
| 109 | theorem | | ⊢  |
| | proveit.numbers.multiplication.elim_one_right |
| 110 | instantiation | 125, 118, 119 | ⊢  |
| | : , : , :  |
| 111 | instantiation | 125, 126, 120 | ⊢  |
| | : , : , :  |
| 112 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 113 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 114 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 115 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 116 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
| 117 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat1 |
| 118 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 119 | instantiation | 125, 121, 122 | ⊢  |
| | : , : , :  |
| 120 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| 121 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 122 | instantiation | 125, 123, 124 | ⊢  |
| | : , : , :  |
| 123 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 124 | instantiation | 125, 126, 127 | ⊢  |
| | : , : , :  |
| 125 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 126 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 127 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |
| *equality replacement requirements |