| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3, 4 | , , ⊢  |
| | : , : , : , :  |
| 1 | reference | 7 | ⊢  |
| 2 | instantiation | 5, 12, 99, 85, 13, 6, 18, 23, 24, 17, 26 | , , ⊢  |
| | : , : , : , : , : , : , :  |
| 3 | instantiation | 7, 8, 9, 10 | , , ⊢  |
| | : , : , : , :  |
| 4 | instantiation | 11, 12, 99, 85, 13, 14, 23, 24, 25, 54, 26 | , , ⊢  |
| | : , : , : , : , : , : , :  |
| 5 | theorem | | ⊢  |
| | proveit.numbers.multiplication.rightward_commutation |
| 6 | instantiation | 27 | ⊢  |
| | : , : , :  |
| 7 | theorem | | ⊢  |
| | proveit.logic.equality.four_chain_transitivity |
| 8 | instantiation | 15, 75, 85, 21, 16, 23, 24, 17, 18, 26 | , , ⊢  |
| | : , : , : , : , : , :  |
| 9 | instantiation | 72, 19 | ⊢  |
| | : , : , :  |
| 10 | instantiation | 20, 75, 85, 21, 22, 23, 24, 25, 54, 26 | , , ⊢  |
| | : , : , : , : , : , :  |
| 11 | theorem | | ⊢  |
| | proveit.numbers.multiplication.leftward_commutation |
| 12 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 13 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 14 | instantiation | 27 | ⊢  |
| | : , : , :  |
| 15 | theorem | | ⊢  |
| | proveit.numbers.multiplication.association |
| 16 | instantiation | 31 | ⊢  |
| | : , :  |
| 17 | instantiation | 32, 83, 33, 34 | ⊢  |
| | : , :  |
| 18 | instantiation | 32, 54, 83, 28 | ⊢  |
| | : , :  |
| 19 | instantiation | 38, 29, 30 | ⊢  |
| | : , : , :  |
| 20 | theorem | | ⊢  |
| | proveit.numbers.multiplication.disassociation |
| 21 | instantiation | 31 | ⊢  |
| | : , :  |
| 22 | instantiation | 31 | ⊢  |
| | : , :  |
| 23 | assumption | | ⊢  |
| 24 | assumption | | ⊢  |
| 25 | instantiation | 32, 46, 33, 34 | ⊢  |
| | : , :  |
| 26 | instantiation | 35, 36, 37 | ⊢  |
| | : , :  |
| 27 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
| 28 | instantiation | 43, 86 | ⊢  |
| | :  |
| 29 | instantiation | 38, 39, 40 | ⊢  |
| | : , : , :  |
| 30 | instantiation | 72, 41 | ⊢  |
| | : , : , :  |
| 31 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 32 | theorem | | ⊢  |
| | proveit.numbers.division.div_complex_closure |
| 33 | instantiation | 97, 90, 42 | ⊢  |
| | : , : , :  |
| 34 | instantiation | 43, 87 | ⊢  |
| | :  |
| 35 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.exp_complex_closure |
| 36 | assumption | | ⊢  |
| 37 | instantiation | 97, 90, 44 | ⊢  |
| | : , : , :  |
| 38 | theorem | | ⊢  |
| | proveit.logic.equality.sub_right_side_into |
| 39 | instantiation | 45, 46, 54, 47, 48, 49 | ⊢  |
| | : , : , : , : , :  |
| 40 | instantiation | 50, 51, 52 | ⊢  |
| | : , : , :  |
| 41 | instantiation | 53, 54 | ⊢  |
| | :  |
| 42 | instantiation | 97, 93, 55 | ⊢  |
| | : , : , :  |
| 43 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
| 44 | instantiation | 56, 57 | ⊢  |
| | :  |
| 45 | theorem | | ⊢  |
| | proveit.numbers.division.mult_frac_cancel_numer_left |
| 46 | instantiation | 97, 90, 57 | ⊢  |
| | : , : , :  |
| 47 | instantiation | 97, 60, 58 | ⊢  |
| | : , : , :  |
| 48 | instantiation | 97, 60, 59 | ⊢  |
| | : , : , :  |
| 49 | instantiation | 97, 60, 61 | ⊢  |
| | : , : , :  |
| 50 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 51 | instantiation | 72, 62 | ⊢  |
| | : , : , :  |
| 52 | instantiation | 72, 63 | ⊢  |
| | : , : , :  |
| 53 | theorem | | ⊢  |
| | proveit.numbers.division.frac_one_denom |
| 54 | instantiation | 97, 90, 64 | ⊢  |
| | : , : , :  |
| 55 | instantiation | 97, 95, 65 | ⊢  |
| | : , : , :  |
| 56 | theorem | | ⊢  |
| | proveit.numbers.negation.real_closure |
| 57 | instantiation | 97, 93, 66 | ⊢  |
| | : , : , :  |
| 58 | instantiation | 97, 69, 67 | ⊢  |
| | : , : , :  |
| 59 | instantiation | 97, 69, 68 | ⊢  |
| | : , : , :  |
| 60 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
| 61 | instantiation | 97, 69, 70 | ⊢  |
| | : , : , :  |
| 62 | instantiation | 72, 71 | ⊢  |
| | : , : , :  |
| 63 | instantiation | 72, 73 | ⊢  |
| | : , : , :  |
| 64 | instantiation | 97, 93, 74 | ⊢  |
| | : , : , :  |
| 65 | instantiation | 97, 98, 75 | ⊢  |
| | : , : , :  |
| 66 | instantiation | 97, 95, 76 | ⊢  |
| | : , : , :  |
| 67 | instantiation | 97, 79, 77 | ⊢  |
| | : , : , :  |
| 68 | instantiation | 97, 79, 78 | ⊢  |
| | : , : , :  |
| 69 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
| 70 | instantiation | 97, 79, 80 | ⊢  |
| | : , : , :  |
| 71 | instantiation | 81, 83 | ⊢  |
| | :  |
| 72 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 73 | instantiation | 82, 83 | ⊢  |
| | :  |
| 74 | instantiation | 97, 95, 84 | ⊢  |
| | : , : , :  |
| 75 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 76 | instantiation | 97, 98, 85 | ⊢  |
| | : , : , :  |
| 77 | instantiation | 97, 88, 86 | ⊢  |
| | : , : , :  |
| 78 | instantiation | 97, 88, 87 | ⊢  |
| | : , : , :  |
| 79 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
| 80 | instantiation | 97, 88, 89 | ⊢  |
| | : , : , :  |
| 81 | theorem | | ⊢  |
| | proveit.numbers.multiplication.elim_one_left |
| 82 | theorem | | ⊢  |
| | proveit.numbers.multiplication.elim_one_right |
| 83 | instantiation | 97, 90, 91 | ⊢  |
| | : , : , :  |
| 84 | instantiation | 97, 98, 92 | ⊢  |
| | : , : , :  |
| 85 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 86 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 87 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 88 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
| 89 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat1 |
| 90 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 91 | instantiation | 97, 93, 94 | ⊢  |
| | : , : , :  |
| 92 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| 93 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 94 | instantiation | 97, 95, 96 | ⊢  |
| | : , : , :  |
| 95 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 96 | instantiation | 97, 98, 99 | ⊢  |
| | : , : , :  |
| 97 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 98 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 99 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |