| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4 | , , ⊢  |
| : , : , : , :  |
1 | reference | 7 | ⊢  |
2 | instantiation | 5, 12, 99, 85, 13, 6, 18, 23, 24, 17, 26 | , , ⊢  |
| : , : , : , : , : , : , :  |
3 | instantiation | 7, 8, 9, 10 | , , ⊢  |
| : , : , : , :  |
4 | instantiation | 11, 12, 99, 85, 13, 14, 23, 24, 25, 54, 26 | , , ⊢  |
| : , : , : , : , : , : , :  |
5 | theorem | | ⊢  |
| proveit.numbers.multiplication.rightward_commutation |
6 | instantiation | 27 | ⊢  |
| : , : , :  |
7 | theorem | | ⊢  |
| proveit.logic.equality.four_chain_transitivity |
8 | instantiation | 15, 75, 85, 21, 16, 23, 24, 17, 18, 26 | , , ⊢  |
| : , : , : , : , : , :  |
9 | instantiation | 72, 19 | ⊢  |
| : , : , :  |
10 | instantiation | 20, 75, 85, 21, 22, 23, 24, 25, 54, 26 | , , ⊢  |
| : , : , : , : , : , :  |
11 | theorem | | ⊢  |
| proveit.numbers.multiplication.leftward_commutation |
12 | axiom | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
13 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
14 | instantiation | 27 | ⊢  |
| : , : , :  |
15 | theorem | | ⊢  |
| proveit.numbers.multiplication.association |
16 | instantiation | 31 | ⊢  |
| : , :  |
17 | instantiation | 32, 83, 33, 34 | ⊢  |
| : , :  |
18 | instantiation | 32, 54, 83, 28 | ⊢  |
| : , :  |
19 | instantiation | 38, 29, 30 | ⊢  |
| : , : , :  |
20 | theorem | | ⊢  |
| proveit.numbers.multiplication.disassociation |
21 | instantiation | 31 | ⊢  |
| : , :  |
22 | instantiation | 31 | ⊢  |
| : , :  |
23 | assumption | | ⊢  |
24 | assumption | | ⊢  |
25 | instantiation | 32, 46, 33, 34 | ⊢  |
| : , :  |
26 | instantiation | 35, 36, 37 | ⊢  |
| : , :  |
27 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
28 | instantiation | 43, 86 | ⊢  |
| :  |
29 | instantiation | 38, 39, 40 | ⊢  |
| : , : , :  |
30 | instantiation | 72, 41 | ⊢  |
| : , : , :  |
31 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
32 | theorem | | ⊢  |
| proveit.numbers.division.div_complex_closure |
33 | instantiation | 97, 90, 42 | ⊢  |
| : , : , :  |
34 | instantiation | 43, 87 | ⊢  |
| :  |
35 | theorem | | ⊢  |
| proveit.numbers.exponentiation.exp_complex_closure |
36 | assumption | | ⊢  |
37 | instantiation | 97, 90, 44 | ⊢  |
| : , : , :  |
38 | theorem | | ⊢  |
| proveit.logic.equality.sub_right_side_into |
39 | instantiation | 45, 46, 54, 47, 48, 49 | ⊢  |
| : , : , : , : , :  |
40 | instantiation | 50, 51, 52 | ⊢  |
| : , : , :  |
41 | instantiation | 53, 54 | ⊢  |
| :  |
42 | instantiation | 97, 93, 55 | ⊢  |
| : , : , :  |
43 | theorem | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
44 | instantiation | 56, 57 | ⊢  |
| :  |
45 | theorem | | ⊢  |
| proveit.numbers.division.mult_frac_cancel_numer_left |
46 | instantiation | 97, 90, 57 | ⊢  |
| : , : , :  |
47 | instantiation | 97, 60, 58 | ⊢  |
| : , : , :  |
48 | instantiation | 97, 60, 59 | ⊢  |
| : , : , :  |
49 | instantiation | 97, 60, 61 | ⊢  |
| : , : , :  |
50 | axiom | | ⊢  |
| proveit.logic.equality.equals_transitivity |
51 | instantiation | 72, 62 | ⊢  |
| : , : , :  |
52 | instantiation | 72, 63 | ⊢  |
| : , : , :  |
53 | theorem | | ⊢  |
| proveit.numbers.division.frac_one_denom |
54 | instantiation | 97, 90, 64 | ⊢  |
| : , : , :  |
55 | instantiation | 97, 95, 65 | ⊢  |
| : , : , :  |
56 | theorem | | ⊢  |
| proveit.numbers.negation.real_closure |
57 | instantiation | 97, 93, 66 | ⊢  |
| : , : , :  |
58 | instantiation | 97, 69, 67 | ⊢  |
| : , : , :  |
59 | instantiation | 97, 69, 68 | ⊢  |
| : , : , :  |
60 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
61 | instantiation | 97, 69, 70 | ⊢  |
| : , : , :  |
62 | instantiation | 72, 71 | ⊢  |
| : , : , :  |
63 | instantiation | 72, 73 | ⊢  |
| : , : , :  |
64 | instantiation | 97, 93, 74 | ⊢  |
| : , : , :  |
65 | instantiation | 97, 98, 75 | ⊢  |
| : , : , :  |
66 | instantiation | 97, 95, 76 | ⊢  |
| : , : , :  |
67 | instantiation | 97, 79, 77 | ⊢  |
| : , : , :  |
68 | instantiation | 97, 79, 78 | ⊢  |
| : , : , :  |
69 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
70 | instantiation | 97, 79, 80 | ⊢  |
| : , : , :  |
71 | instantiation | 81, 83 | ⊢  |
| :  |
72 | axiom | | ⊢  |
| proveit.logic.equality.substitution |
73 | instantiation | 82, 83 | ⊢  |
| :  |
74 | instantiation | 97, 95, 84 | ⊢  |
| : , : , :  |
75 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat2 |
76 | instantiation | 97, 98, 85 | ⊢  |
| : , : , :  |
77 | instantiation | 97, 88, 86 | ⊢  |
| : , : , :  |
78 | instantiation | 97, 88, 87 | ⊢  |
| : , : , :  |
79 | theorem | | ⊢  |
| proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
80 | instantiation | 97, 88, 89 | ⊢  |
| : , : , :  |
81 | theorem | | ⊢  |
| proveit.numbers.multiplication.elim_one_left |
82 | theorem | | ⊢  |
| proveit.numbers.multiplication.elim_one_right |
83 | instantiation | 97, 90, 91 | ⊢  |
| : , : , :  |
84 | instantiation | 97, 98, 92 | ⊢  |
| : , : , :  |
85 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat1 |
86 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat3 |
87 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat2 |
88 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
89 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat1 |
90 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
91 | instantiation | 97, 93, 94 | ⊢  |
| : , : , :  |
92 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat4 |
93 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
94 | instantiation | 97, 95, 96 | ⊢  |
| : , : , :  |
95 | theorem | | ⊢  |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
96 | instantiation | 97, 98, 99 | ⊢  |
| : , : , :  |
97 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
98 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nat_within_int |
99 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat3 |