| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4 | , , ⊢ |
| : , : , : , : |
1 | reference | 7 | ⊢ |
2 | instantiation | 5, 12, 99, 85, 13, 6, 18, 23, 24, 17, 26 | , , ⊢ |
| : , : , : , : , : , : , : |
3 | instantiation | 7, 8, 9, 10 | , , ⊢ |
| : , : , : , : |
4 | instantiation | 11, 12, 99, 85, 13, 14, 23, 24, 25, 54, 26 | , , ⊢ |
| : , : , : , : , : , : , : |
5 | theorem | | ⊢ |
| proveit.numbers.multiplication.rightward_commutation |
6 | instantiation | 27 | ⊢ |
| : , : , : |
7 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
8 | instantiation | 15, 75, 85, 21, 16, 23, 24, 17, 18, 26 | , , ⊢ |
| : , : , : , : , : , : |
9 | instantiation | 72, 19 | ⊢ |
| : , : , : |
10 | instantiation | 20, 75, 85, 21, 22, 23, 24, 25, 54, 26 | , , ⊢ |
| : , : , : , : , : , : |
11 | theorem | | ⊢ |
| proveit.numbers.multiplication.leftward_commutation |
12 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
13 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
14 | instantiation | 27 | ⊢ |
| : , : , : |
15 | theorem | | ⊢ |
| proveit.numbers.multiplication.association |
16 | instantiation | 31 | ⊢ |
| : , : |
17 | instantiation | 32, 83, 33, 34 | ⊢ |
| : , : |
18 | instantiation | 32, 54, 83, 28 | ⊢ |
| : , : |
19 | instantiation | 38, 29, 30 | ⊢ |
| : , : , : |
20 | theorem | | ⊢ |
| proveit.numbers.multiplication.disassociation |
21 | instantiation | 31 | ⊢ |
| : , : |
22 | instantiation | 31 | ⊢ |
| : , : |
23 | assumption | | ⊢ |
24 | assumption | | ⊢ |
25 | instantiation | 32, 46, 33, 34 | ⊢ |
| : , : |
26 | instantiation | 35, 36, 37 | ⊢ |
| : , : |
27 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
28 | instantiation | 43, 86 | ⊢ |
| : |
29 | instantiation | 38, 39, 40 | ⊢ |
| : , : , : |
30 | instantiation | 72, 41 | ⊢ |
| : , : , : |
31 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
32 | theorem | | ⊢ |
| proveit.numbers.division.div_complex_closure |
33 | instantiation | 97, 90, 42 | ⊢ |
| : , : , : |
34 | instantiation | 43, 87 | ⊢ |
| : |
35 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_complex_closure |
36 | assumption | | ⊢ |
37 | instantiation | 97, 90, 44 | ⊢ |
| : , : , : |
38 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
39 | instantiation | 45, 46, 54, 47, 48, 49 | ⊢ |
| : , : , : , : , : |
40 | instantiation | 50, 51, 52 | ⊢ |
| : , : , : |
41 | instantiation | 53, 54 | ⊢ |
| : |
42 | instantiation | 97, 93, 55 | ⊢ |
| : , : , : |
43 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
44 | instantiation | 56, 57 | ⊢ |
| : |
45 | theorem | | ⊢ |
| proveit.numbers.division.mult_frac_cancel_numer_left |
46 | instantiation | 97, 90, 57 | ⊢ |
| : , : , : |
47 | instantiation | 97, 60, 58 | ⊢ |
| : , : , : |
48 | instantiation | 97, 60, 59 | ⊢ |
| : , : , : |
49 | instantiation | 97, 60, 61 | ⊢ |
| : , : , : |
50 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
51 | instantiation | 72, 62 | ⊢ |
| : , : , : |
52 | instantiation | 72, 63 | ⊢ |
| : , : , : |
53 | theorem | | ⊢ |
| proveit.numbers.division.frac_one_denom |
54 | instantiation | 97, 90, 64 | ⊢ |
| : , : , : |
55 | instantiation | 97, 95, 65 | ⊢ |
| : , : , : |
56 | theorem | | ⊢ |
| proveit.numbers.negation.real_closure |
57 | instantiation | 97, 93, 66 | ⊢ |
| : , : , : |
58 | instantiation | 97, 69, 67 | ⊢ |
| : , : , : |
59 | instantiation | 97, 69, 68 | ⊢ |
| : , : , : |
60 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
61 | instantiation | 97, 69, 70 | ⊢ |
| : , : , : |
62 | instantiation | 72, 71 | ⊢ |
| : , : , : |
63 | instantiation | 72, 73 | ⊢ |
| : , : , : |
64 | instantiation | 97, 93, 74 | ⊢ |
| : , : , : |
65 | instantiation | 97, 98, 75 | ⊢ |
| : , : , : |
66 | instantiation | 97, 95, 76 | ⊢ |
| : , : , : |
67 | instantiation | 97, 79, 77 | ⊢ |
| : , : , : |
68 | instantiation | 97, 79, 78 | ⊢ |
| : , : , : |
69 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
70 | instantiation | 97, 79, 80 | ⊢ |
| : , : , : |
71 | instantiation | 81, 83 | ⊢ |
| : |
72 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
73 | instantiation | 82, 83 | ⊢ |
| : |
74 | instantiation | 97, 95, 84 | ⊢ |
| : , : , : |
75 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
76 | instantiation | 97, 98, 85 | ⊢ |
| : , : , : |
77 | instantiation | 97, 88, 86 | ⊢ |
| : , : , : |
78 | instantiation | 97, 88, 87 | ⊢ |
| : , : , : |
79 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
80 | instantiation | 97, 88, 89 | ⊢ |
| : , : , : |
81 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_left |
82 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_right |
83 | instantiation | 97, 90, 91 | ⊢ |
| : , : , : |
84 | instantiation | 97, 98, 92 | ⊢ |
| : , : , : |
85 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
86 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
87 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
88 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
89 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
90 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
91 | instantiation | 97, 93, 94 | ⊢ |
| : , : , : |
92 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
93 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
94 | instantiation | 97, 95, 96 | ⊢ |
| : , : , : |
95 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
96 | instantiation | 97, 98, 99 | ⊢ |
| : , : , : |
97 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
98 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
99 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |