logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13*, ,  ⊢  
  : , : , : , : , : , :
1theorem  ⊢  
 proveit.numbers.multiplication.association
2axiom  ⊢  
 proveit.numbers.number_sets.natural_numbers.zero_in_nats
3reference75  ⊢  
4theorem  ⊢  
 proveit.numbers.numerals.decimals.nat3
5theorem  ⊢  
 proveit.core_expr_types.tuples.tuple_len_0_typical_eq
6instantiation43  ⊢  
  : , :
7instantiation14  ⊢  
  : , : , :
8reference44  ⊢  
9instantiation15, 21, 51, 16  ⊢  
  : , :
10assumption  ⊢  
11assumption  ⊢  
12instantiation17, 18, 19  ⊢  
  : , :
13instantiation20, 44, 21, 38, 37, 22*, 23*  ⊢  
  : , : , : , :
14theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_3_typical_eq
15theorem  ⊢  
 proveit.numbers.division.div_complex_closure
16instantiation24, 67  ⊢  
  :
17theorem  ⊢  
 proveit.numbers.exponentiation.exp_complex_closure
18assumption  ⊢  
19instantiation73, 57, 25  ⊢  
  : , : , :
20theorem  ⊢  
 proveit.numbers.division.prod_of_fracs
21instantiation73, 57, 30  ⊢  
  : , : , :
22instantiation50, 44  ⊢  
  :
23instantiation26, 27, 28  ⊢  
  : , : , :
24theorem  ⊢  
 proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos
25instantiation29, 30  ⊢  
  :
26axiom  ⊢  
 proveit.logic.equality.equals_transitivity
27instantiation31, 75, 32, 33, 34, 35  ⊢  
  : , : , : , :
28instantiation36, 37, 38, 51, 39*, 40*, 41*  ⊢  
  : , : , :
29theorem  ⊢  
 proveit.numbers.negation.real_closure
30instantiation73, 64, 42  ⊢  
  : , : , :
31axiom  ⊢  
 proveit.core_expr_types.operations.operands_substitution
32instantiation43  ⊢  
  : , :
33instantiation43  ⊢  
  : , :
34instantiation49, 44  ⊢  
  :
35instantiation45, 51  ⊢  
  :
36theorem  ⊢  
 proveit.numbers.division.frac_cancel_left
37instantiation73, 47, 46  ⊢  
  : , : , :
38instantiation73, 47, 48  ⊢  
  : , : , :
39theorem  ⊢  
 proveit.numbers.numerals.decimals.mult_2_2
40instantiation49, 51  ⊢  
  :
41instantiation50, 51  ⊢  
  :
42instantiation73, 70, 52  ⊢  
  : , : , :
43theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_2_typical_eq
44instantiation73, 57, 53  ⊢  
  : , : , :
45theorem  ⊢  
 proveit.numbers.multiplication.elim_one_left
46instantiation73, 55, 54  ⊢  
  : , : , :
47theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero
48instantiation73, 55, 56  ⊢  
  : , : , :
49theorem  ⊢  
 proveit.numbers.multiplication.elim_one_right
50theorem  ⊢  
 proveit.numbers.division.frac_one_denom
51instantiation73, 57, 58  ⊢  
  : , : , :
52instantiation73, 74, 59  ⊢  
  : , : , :
53instantiation73, 64, 60  ⊢  
  : , : , :
54instantiation73, 62, 61  ⊢  
  : , : , :
55theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero
56instantiation73, 62, 63  ⊢  
  : , : , :
57theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
58instantiation73, 64, 65  ⊢  
  : , : , :
59theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
60instantiation73, 70, 66  ⊢  
  : , : , :
61instantiation73, 68, 67  ⊢  
  : , : , :
62theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero
63instantiation73, 68, 69  ⊢  
  : , : , :
64theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
65instantiation73, 70, 71  ⊢  
  : , : , :
66instantiation73, 74, 72  ⊢  
  : , : , :
67theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat2
68theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int
69theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat1
70theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
71instantiation73, 74, 75  ⊢  
  : , : , :
72theorem  ⊢  
 proveit.numbers.numerals.decimals.nat4
73theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
74theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
75theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
*equality replacement requirements