| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3 | , , , ⊢  |
| | : , : , :  |
| 1 | reference | 100 | ⊢  |
| 2 | instantiation | 122, 4 | , ⊢  |
| | : , : , :  |
| 3 | instantiation | 100, 5, 6 | , , ⊢  |
| | : , : , :  |
| 4 | instantiation | 7, 8, 75, 92, 9, 10, 11* | , ⊢  |
| | : , : , :  |
| 5 | instantiation | 100, 12, 13 | , , ⊢  |
| | : , : , :  |
| 6 | instantiation | 100, 14, 15 | , , ⊢  |
| | : , : , :  |
| 7 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.real_power_of_product |
| 8 | instantiation | 148, 141, 16 | ⊢  |
| | : , : , :  |
| 9 | instantiation | 17, 18 | ⊢  |
| | :  |
| 10 | assumption | | ⊢  |
| 11 | instantiation | 19, 98, 97, 140, 20*, 21* | ⊢  |
| | : , : , :  |
| 12 | instantiation | 100, 22, 23 | , , ⊢  |
| | : , : , :  |
| 13 | instantiation | 38, 24, 25, 26 | , , ⊢  |
| | : , : , : , :  |
| 14 | instantiation | 42, 136, 135, 57, 104, 59, 60, 61, 62 | , , ⊢  |
| | : , : , : , : , : , : , :  |
| 15 | instantiation | 51, 43, 135, 150, 44, 27, 28, 104, 61, 59, 60, 62, 29* | , , ⊢  |
| | : , : , : , : , : , :  |
| 16 | instantiation | 148, 144, 30 | ⊢  |
| | : , : , :  |
| 17 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.nonzero_if_in_rational_nonzero |
| 18 | instantiation | 148, 31, 49 | ⊢  |
| | : , : , :  |
| 19 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.neg_power_of_quotient |
| 20 | instantiation | 32, 133 | ⊢  |
| | :  |
| 21 | instantiation | 32, 94 | ⊢  |
| | :  |
| 22 | instantiation | 56, 43, 150, 136, 44, 34, 54, 59, 60, 33 | , , ⊢  |
| | : , : , : , : , : , :  |
| 23 | instantiation | 56, 150, 135, 43, 34, 35, 44, 54, 59, 60, 53, 62 | , , ⊢  |
| | : , : , : , : , : , :  |
| 24 | instantiation | 36, 43, 150, 136, 44, 37, 54, 59, 60, 53, 62 | , , ⊢  |
| | : , : , : , : , : , : , :  |
| 25 | instantiation | 38, 39, 40, 41 | , , ⊢  |
| | : , : , : , :  |
| 26 | instantiation | 42, 43, 150, 136, 44, 45, 59, 60, 61, 104, 62 | , , ⊢  |
| | : , : , : , : , : , : , :  |
| 27 | instantiation | 93 | ⊢  |
| | : , :  |
| 28 | instantiation | 63 | ⊢  |
| | : , : , :  |
| 29 | instantiation | 46, 104, 96, 99, 98, 90*, 47* | ⊢  |
| | : , : , : , :  |
| 30 | instantiation | 148, 48, 49 | ⊢  |
| | : , : , :  |
| 31 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational_nonzero |
| 32 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
| 33 | instantiation | 50, 53, 62 | ⊢  |
| | : , :  |
| 34 | instantiation | 63 | ⊢  |
| | : , : , :  |
| 35 | instantiation | 93 | ⊢  |
| | : , :  |
| 36 | theorem | | ⊢  |
| | proveit.numbers.multiplication.rightward_commutation |
| 37 | instantiation | 63 | ⊢  |
| | : , : , :  |
| 38 | theorem | | ⊢  |
| | proveit.logic.equality.four_chain_transitivity |
| 39 | instantiation | 51, 135, 136, 57, 52, 59, 60, 53, 54, 62 | , , ⊢  |
| | : , : , : , : , : , :  |
| 40 | instantiation | 122, 55 | ⊢  |
| | : , : , :  |
| 41 | instantiation | 56, 135, 136, 57, 58, 59, 60, 61, 104, 62 | , , ⊢  |
| | : , : , : , : , : , :  |
| 42 | theorem | | ⊢  |
| | proveit.numbers.multiplication.leftward_commutation |
| 43 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 44 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 45 | instantiation | 63 | ⊢  |
| | : , : , :  |
| 46 | theorem | | ⊢  |
| | proveit.numbers.division.prod_of_fracs |
| 47 | instantiation | 100, 64, 65 | ⊢  |
| | : , : , :  |
| 48 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational |
| 49 | instantiation | 66, 67, 68 | ⊢  |
| | : , :  |
| 50 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_complex_closure_bin |
| 51 | theorem | | ⊢  |
| | proveit.numbers.multiplication.association |
| 52 | instantiation | 93 | ⊢  |
| | : , :  |
| 53 | instantiation | 72, 133, 94, 73 | ⊢  |
| | : , :  |
| 54 | instantiation | 72, 104, 133, 69 | ⊢  |
| | : , :  |
| 55 | instantiation | 87, 70, 71 | ⊢  |
| | : , : , :  |
| 56 | theorem | | ⊢  |
| | proveit.numbers.multiplication.disassociation |
| 57 | instantiation | 93 | ⊢  |
| | : , :  |
| 58 | instantiation | 93 | ⊢  |
| | : , :  |
| 59 | assumption | | ⊢  |
| 60 | assumption | | ⊢  |
| 61 | instantiation | 72, 96, 94, 73 | ⊢  |
| | : , :  |
| 62 | instantiation | 74, 75, 76 | ⊢  |
| | : , :  |
| 63 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
| 64 | instantiation | 77, 135, 78, 79, 80, 81 | ⊢  |
| | : , : , : , :  |
| 65 | instantiation | 82, 98, 99, 94, 83*, 84*, 85* | ⊢  |
| | : , : , :  |
| 66 | theorem | | ⊢  |
| | proveit.numbers.division.div_rational_pos_closure |
| 67 | instantiation | 148, 86, 138 | ⊢  |
| | : , : , :  |
| 68 | instantiation | 148, 86, 137 | ⊢  |
| | : , : , :  |
| 69 | instantiation | 91, 137 | ⊢  |
| | :  |
| 70 | instantiation | 87, 88, 89 | ⊢  |
| | : , : , :  |
| 71 | instantiation | 122, 90 | ⊢  |
| | : , : , :  |
| 72 | theorem | | ⊢  |
| | proveit.numbers.division.div_complex_closure |
| 73 | instantiation | 91, 138 | ⊢  |
| | :  |
| 74 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.exp_complex_closure |
| 75 | assumption | | ⊢  |
| 76 | instantiation | 148, 141, 92 | ⊢  |
| | : , : , :  |
| 77 | axiom | | ⊢  |
| | proveit.core_expr_types.operations.operands_substitution |
| 78 | instantiation | 93 | ⊢  |
| | : , :  |
| 79 | instantiation | 93 | ⊢  |
| | : , :  |
| 80 | instantiation | 132, 104 | ⊢  |
| | :  |
| 81 | instantiation | 131, 94 | ⊢  |
| | :  |
| 82 | theorem | | ⊢  |
| | proveit.numbers.division.frac_cancel_left |
| 83 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.mult_2_2 |
| 84 | instantiation | 132, 94 | ⊢  |
| | :  |
| 85 | instantiation | 103, 94 | ⊢  |
| | :  |
| 86 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.nat_pos_within_rational_pos |
| 87 | theorem | | ⊢  |
| | proveit.logic.equality.sub_right_side_into |
| 88 | instantiation | 95, 96, 104, 97, 98, 99 | ⊢  |
| | : , : , : , : , :  |
| 89 | instantiation | 100, 101, 102 | ⊢  |
| | : , : , :  |
| 90 | instantiation | 103, 104 | ⊢  |
| | :  |
| 91 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
| 92 | instantiation | 105, 107 | ⊢  |
| | :  |
| 93 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 94 | instantiation | 148, 141, 106 | ⊢  |
| | : , : , :  |
| 95 | theorem | | ⊢  |
| | proveit.numbers.division.mult_frac_cancel_numer_left |
| 96 | instantiation | 148, 141, 107 | ⊢  |
| | : , : , :  |
| 97 | instantiation | 148, 110, 108 | ⊢  |
| | : , : , :  |
| 98 | instantiation | 148, 110, 109 | ⊢  |
| | : , : , :  |
| 99 | instantiation | 148, 110, 111 | ⊢  |
| | : , : , :  |
| 100 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 101 | instantiation | 122, 112 | ⊢  |
| | : , : , :  |
| 102 | instantiation | 122, 113 | ⊢  |
| | : , : , :  |
| 103 | theorem | | ⊢  |
| | proveit.numbers.division.frac_one_denom |
| 104 | instantiation | 148, 141, 114 | ⊢  |
| | : , : , :  |
| 105 | theorem | | ⊢  |
| | proveit.numbers.negation.real_closure |
| 106 | instantiation | 148, 144, 115 | ⊢  |
| | : , : , :  |
| 107 | instantiation | 148, 144, 116 | ⊢  |
| | : , : , :  |
| 108 | instantiation | 148, 119, 117 | ⊢  |
| | : , : , :  |
| 109 | instantiation | 148, 119, 118 | ⊢  |
| | : , : , :  |
| 110 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
| 111 | instantiation | 148, 119, 120 | ⊢  |
| | : , : , :  |
| 112 | instantiation | 122, 121 | ⊢  |
| | : , : , :  |
| 113 | instantiation | 122, 123 | ⊢  |
| | : , : , :  |
| 114 | instantiation | 148, 144, 124 | ⊢  |
| | : , : , :  |
| 115 | instantiation | 148, 146, 125 | ⊢  |
| | : , : , :  |
| 116 | instantiation | 148, 146, 126 | ⊢  |
| | : , : , :  |
| 117 | instantiation | 148, 129, 127 | ⊢  |
| | : , : , :  |
| 118 | instantiation | 148, 129, 128 | ⊢  |
| | : , : , :  |
| 119 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
| 120 | instantiation | 148, 129, 130 | ⊢  |
| | : , : , :  |
| 121 | instantiation | 131, 133 | ⊢  |
| | :  |
| 122 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 123 | instantiation | 132, 133 | ⊢  |
| | :  |
| 124 | instantiation | 148, 146, 134 | ⊢  |
| | : , : , :  |
| 125 | instantiation | 148, 149, 135 | ⊢  |
| | : , : , :  |
| 126 | instantiation | 148, 149, 136 | ⊢  |
| | : , : , :  |
| 127 | instantiation | 148, 139, 137 | ⊢  |
| | : , : , :  |
| 128 | instantiation | 148, 139, 138 | ⊢  |
| | : , : , :  |
| 129 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
| 130 | instantiation | 148, 139, 140 | ⊢  |
| | : , : , :  |
| 131 | theorem | | ⊢  |
| | proveit.numbers.multiplication.elim_one_left |
| 132 | theorem | | ⊢  |
| | proveit.numbers.multiplication.elim_one_right |
| 133 | instantiation | 148, 141, 142 | ⊢  |
| | : , : , :  |
| 134 | instantiation | 148, 149, 143 | ⊢  |
| | : , : , :  |
| 135 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 136 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 137 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 138 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 139 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
| 140 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat1 |
| 141 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 142 | instantiation | 148, 144, 145 | ⊢  |
| | : , : , :  |
| 143 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| 144 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 145 | instantiation | 148, 146, 147 | ⊢  |
| | : , : , :  |
| 146 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 147 | instantiation | 148, 149, 150 | ⊢  |
| | : , : , :  |
| 148 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 149 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 150 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |
| *equality replacement requirements |