| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | , , , ⊢ |
| : , : , : |
1 | reference | 100 | ⊢ |
2 | instantiation | 122, 4 | , ⊢ |
| : , : , : |
3 | instantiation | 100, 5, 6 | , , ⊢ |
| : , : , : |
4 | instantiation | 7, 8, 75, 92, 9, 10, 11* | , ⊢ |
| : , : , : |
5 | instantiation | 100, 12, 13 | , , ⊢ |
| : , : , : |
6 | instantiation | 100, 14, 15 | , , ⊢ |
| : , : , : |
7 | theorem | | ⊢ |
| proveit.numbers.exponentiation.real_power_of_product |
8 | instantiation | 148, 141, 16 | ⊢ |
| : , : , : |
9 | instantiation | 17, 18 | ⊢ |
| : |
10 | assumption | | ⊢ |
11 | instantiation | 19, 98, 97, 140, 20*, 21* | ⊢ |
| : , : , : |
12 | instantiation | 100, 22, 23 | , , ⊢ |
| : , : , : |
13 | instantiation | 38, 24, 25, 26 | , , ⊢ |
| : , : , : , : |
14 | instantiation | 42, 136, 135, 57, 104, 59, 60, 61, 62 | , , ⊢ |
| : , : , : , : , : , : , : |
15 | instantiation | 51, 43, 135, 150, 44, 27, 28, 104, 61, 59, 60, 62, 29* | , , ⊢ |
| : , : , : , : , : , : |
16 | instantiation | 148, 144, 30 | ⊢ |
| : , : , : |
17 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nonzero_if_in_rational_nonzero |
18 | instantiation | 148, 31, 49 | ⊢ |
| : , : , : |
19 | theorem | | ⊢ |
| proveit.numbers.exponentiation.neg_power_of_quotient |
20 | instantiation | 32, 133 | ⊢ |
| : |
21 | instantiation | 32, 94 | ⊢ |
| : |
22 | instantiation | 56, 43, 150, 136, 44, 34, 54, 59, 60, 33 | , , ⊢ |
| : , : , : , : , : , : |
23 | instantiation | 56, 150, 135, 43, 34, 35, 44, 54, 59, 60, 53, 62 | , , ⊢ |
| : , : , : , : , : , : |
24 | instantiation | 36, 43, 150, 136, 44, 37, 54, 59, 60, 53, 62 | , , ⊢ |
| : , : , : , : , : , : , : |
25 | instantiation | 38, 39, 40, 41 | , , ⊢ |
| : , : , : , : |
26 | instantiation | 42, 43, 150, 136, 44, 45, 59, 60, 61, 104, 62 | , , ⊢ |
| : , : , : , : , : , : , : |
27 | instantiation | 93 | ⊢ |
| : , : |
28 | instantiation | 63 | ⊢ |
| : , : , : |
29 | instantiation | 46, 104, 96, 99, 98, 90*, 47* | ⊢ |
| : , : , : , : |
30 | instantiation | 148, 48, 49 | ⊢ |
| : , : , : |
31 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational_nonzero |
32 | theorem | | ⊢ |
| proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
33 | instantiation | 50, 53, 62 | ⊢ |
| : , : |
34 | instantiation | 63 | ⊢ |
| : , : , : |
35 | instantiation | 93 | ⊢ |
| : , : |
36 | theorem | | ⊢ |
| proveit.numbers.multiplication.rightward_commutation |
37 | instantiation | 63 | ⊢ |
| : , : , : |
38 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
39 | instantiation | 51, 135, 136, 57, 52, 59, 60, 53, 54, 62 | , , ⊢ |
| : , : , : , : , : , : |
40 | instantiation | 122, 55 | ⊢ |
| : , : , : |
41 | instantiation | 56, 135, 136, 57, 58, 59, 60, 61, 104, 62 | , , ⊢ |
| : , : , : , : , : , : |
42 | theorem | | ⊢ |
| proveit.numbers.multiplication.leftward_commutation |
43 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
44 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
45 | instantiation | 63 | ⊢ |
| : , : , : |
46 | theorem | | ⊢ |
| proveit.numbers.division.prod_of_fracs |
47 | instantiation | 100, 64, 65 | ⊢ |
| : , : , : |
48 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational |
49 | instantiation | 66, 67, 68 | ⊢ |
| : , : |
50 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_complex_closure_bin |
51 | theorem | | ⊢ |
| proveit.numbers.multiplication.association |
52 | instantiation | 93 | ⊢ |
| : , : |
53 | instantiation | 72, 133, 94, 73 | ⊢ |
| : , : |
54 | instantiation | 72, 104, 133, 69 | ⊢ |
| : , : |
55 | instantiation | 87, 70, 71 | ⊢ |
| : , : , : |
56 | theorem | | ⊢ |
| proveit.numbers.multiplication.disassociation |
57 | instantiation | 93 | ⊢ |
| : , : |
58 | instantiation | 93 | ⊢ |
| : , : |
59 | assumption | | ⊢ |
60 | assumption | | ⊢ |
61 | instantiation | 72, 96, 94, 73 | ⊢ |
| : , : |
62 | instantiation | 74, 75, 76 | ⊢ |
| : , : |
63 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
64 | instantiation | 77, 135, 78, 79, 80, 81 | ⊢ |
| : , : , : , : |
65 | instantiation | 82, 98, 99, 94, 83*, 84*, 85* | ⊢ |
| : , : , : |
66 | theorem | | ⊢ |
| proveit.numbers.division.div_rational_pos_closure |
67 | instantiation | 148, 86, 138 | ⊢ |
| : , : , : |
68 | instantiation | 148, 86, 137 | ⊢ |
| : , : , : |
69 | instantiation | 91, 137 | ⊢ |
| : |
70 | instantiation | 87, 88, 89 | ⊢ |
| : , : , : |
71 | instantiation | 122, 90 | ⊢ |
| : , : , : |
72 | theorem | | ⊢ |
| proveit.numbers.division.div_complex_closure |
73 | instantiation | 91, 138 | ⊢ |
| : |
74 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_complex_closure |
75 | assumption | | ⊢ |
76 | instantiation | 148, 141, 92 | ⊢ |
| : , : , : |
77 | axiom | | ⊢ |
| proveit.core_expr_types.operations.operands_substitution |
78 | instantiation | 93 | ⊢ |
| : , : |
79 | instantiation | 93 | ⊢ |
| : , : |
80 | instantiation | 132, 104 | ⊢ |
| : |
81 | instantiation | 131, 94 | ⊢ |
| : |
82 | theorem | | ⊢ |
| proveit.numbers.division.frac_cancel_left |
83 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.mult_2_2 |
84 | instantiation | 132, 94 | ⊢ |
| : |
85 | instantiation | 103, 94 | ⊢ |
| : |
86 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nat_pos_within_rational_pos |
87 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
88 | instantiation | 95, 96, 104, 97, 98, 99 | ⊢ |
| : , : , : , : , : |
89 | instantiation | 100, 101, 102 | ⊢ |
| : , : , : |
90 | instantiation | 103, 104 | ⊢ |
| : |
91 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
92 | instantiation | 105, 107 | ⊢ |
| : |
93 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
94 | instantiation | 148, 141, 106 | ⊢ |
| : , : , : |
95 | theorem | | ⊢ |
| proveit.numbers.division.mult_frac_cancel_numer_left |
96 | instantiation | 148, 141, 107 | ⊢ |
| : , : , : |
97 | instantiation | 148, 110, 108 | ⊢ |
| : , : , : |
98 | instantiation | 148, 110, 109 | ⊢ |
| : , : , : |
99 | instantiation | 148, 110, 111 | ⊢ |
| : , : , : |
100 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
101 | instantiation | 122, 112 | ⊢ |
| : , : , : |
102 | instantiation | 122, 113 | ⊢ |
| : , : , : |
103 | theorem | | ⊢ |
| proveit.numbers.division.frac_one_denom |
104 | instantiation | 148, 141, 114 | ⊢ |
| : , : , : |
105 | theorem | | ⊢ |
| proveit.numbers.negation.real_closure |
106 | instantiation | 148, 144, 115 | ⊢ |
| : , : , : |
107 | instantiation | 148, 144, 116 | ⊢ |
| : , : , : |
108 | instantiation | 148, 119, 117 | ⊢ |
| : , : , : |
109 | instantiation | 148, 119, 118 | ⊢ |
| : , : , : |
110 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
111 | instantiation | 148, 119, 120 | ⊢ |
| : , : , : |
112 | instantiation | 122, 121 | ⊢ |
| : , : , : |
113 | instantiation | 122, 123 | ⊢ |
| : , : , : |
114 | instantiation | 148, 144, 124 | ⊢ |
| : , : , : |
115 | instantiation | 148, 146, 125 | ⊢ |
| : , : , : |
116 | instantiation | 148, 146, 126 | ⊢ |
| : , : , : |
117 | instantiation | 148, 129, 127 | ⊢ |
| : , : , : |
118 | instantiation | 148, 129, 128 | ⊢ |
| : , : , : |
119 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
120 | instantiation | 148, 129, 130 | ⊢ |
| : , : , : |
121 | instantiation | 131, 133 | ⊢ |
| : |
122 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
123 | instantiation | 132, 133 | ⊢ |
| : |
124 | instantiation | 148, 146, 134 | ⊢ |
| : , : , : |
125 | instantiation | 148, 149, 135 | ⊢ |
| : , : , : |
126 | instantiation | 148, 149, 136 | ⊢ |
| : , : , : |
127 | instantiation | 148, 139, 137 | ⊢ |
| : , : , : |
128 | instantiation | 148, 139, 138 | ⊢ |
| : , : , : |
129 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
130 | instantiation | 148, 139, 140 | ⊢ |
| : , : , : |
131 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_left |
132 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_right |
133 | instantiation | 148, 141, 142 | ⊢ |
| : , : , : |
134 | instantiation | 148, 149, 143 | ⊢ |
| : , : , : |
135 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
136 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
137 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
138 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
139 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
140 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
141 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
142 | instantiation | 148, 144, 145 | ⊢ |
| : , : , : |
143 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
144 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
145 | instantiation | 148, 146, 147 | ⊢ |
| : , : , : |
146 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
147 | instantiation | 148, 149, 150 | ⊢ |
| : , : , : |
148 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
149 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
150 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
*equality replacement requirements |