| step type | requirements | statement |
0 | instantiation | 1, 2, 3* | , , , , ⊢  |
| : , :  |
1 | reference | 32 | ⊢  |
2 | modus ponens | 4, 5 | , , , , ⊢  |
3 | instantiation | 6, 7, 8 | , , , , ⊢  |
| : , : , :  |
4 | instantiation | 9, 78, 46, 49, 17, 30 | ⊢  |
| : , : , : , : , : , : , : , : , : , : , :  |
5 | generalization | 10 | , , , , ⊢  |
6 | axiom | | ⊢  |
| proveit.logic.equality.equals_transitivity |
7 | instantiation | 43, 11 | , ⊢  |
| : , : , :  |
8 | instantiation | 29, 35, 78, 49, 50, 51, 30, 53, 54, 24, 56 | , , , , ⊢  |
| : , : , : , : , : , : , : , : , : , :  |
9 | theorem | | ⊢  |
| proveit.linear_algebra.tensors.tensor_prod_distribution_over_summation_with_scalar_mult |
10 | instantiation | 12, 13, 14 | , , , , , ⊢  |
| : , : , :  |
11 | instantiation | 32, 15 | , ⊢  |
| : , :  |
12 | theorem | | ⊢  |
| proveit.logic.equality.sub_left_side_into |
13 | instantiation | 16, 17, 35, 18 | , , , , , ⊢  |
| : , : , : , :  |
14 | instantiation | 19, 20, 21, 22 | , , , , , ⊢  |
| : , : , : , :  |
15 | modus ponens | 23, 24 | , ⊢  |
16 | theorem | | ⊢  |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
17 | instantiation | 25, 39, 40, 51 | ⊢  |
| : , : , :  |
18 | instantiation | 26, 27, 28 | , , , , ⊢  |
| : , : , :  |
19 | theorem | | ⊢  |
| proveit.logic.equality.four_chain_transitivity |
20 | instantiation | 29, 35, 78, 49, 50, 51, 30, 53, 54, 55, 56 | , , , , , ⊢  |
| : , : , : , : , : , : , : , : , : , :  |
21 | instantiation | 31 | ⊢  |
| :  |
22 | instantiation | 32, 33 | , , , , ⊢  |
| : , :  |
23 | instantiation | 34, 46, 51, 35 | ⊢  |
| : , : , : , : , : , : , :  |
24 | modus ponens | 36, 37 | ⊢  |
25 | theorem | | ⊢  |
| proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
26 | theorem | | ⊢  |
| proveit.logic.equality.sub_right_side_into |
27 | instantiation | 38, 39, 40, 51, 41, 53, 54, 55, 56 | , , , , ⊢  |
| : , : , : , :  |
28 | instantiation | 42, 49, 78, 50, 51, 52, 53, 54, 55, 56 | , , , , ⊢  |
| : , : , : , : , : , : , : , : , : , :  |
29 | theorem | | ⊢  |
| proveit.linear_algebra.tensors.factor_scalar_from_tensor_prod |
30 | instantiation | 59 | ⊢  |
| : , :  |
31 | axiom | | ⊢  |
| proveit.logic.equality.equals_reflexivity |
32 | theorem | | ⊢  |
| proveit.logic.equality.equals_reversal |
33 | instantiation | 43, 44 | , , , , ⊢  |
| : , : , :  |
34 | theorem | | ⊢  |
| proveit.linear_algebra.scalar_multiplication.distribution_over_vec_sum |
35 | assumption | | ⊢  |
36 | instantiation | 45, 46, 51 | ⊢  |
| : , : , : , : , : , :  |
37 | generalization | 55 | ⊢  |
38 | theorem | | ⊢  |
| proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
39 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat4 |
40 | instantiation | 47 | ⊢  |
| : , : , : , :  |
41 | instantiation | 47 | ⊢  |
| : , : , : , :  |
42 | theorem | | ⊢  |
| proveit.linear_algebra.tensors.tensor_prod_association |
43 | axiom | | ⊢  |
| proveit.logic.equality.substitution |
44 | instantiation | 48, 49, 78, 50, 51, 52, 53, 54, 55, 56 | , , , , ⊢  |
| : , : , : , : , : , : , : , : , : , :  |
45 | theorem | | ⊢  |
| proveit.linear_algebra.addition.summation_closure |
46 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat1 |
47 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
48 | theorem | | ⊢  |
| proveit.linear_algebra.tensors.tensor_prod_disassociation |
49 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat1 |
50 | instantiation | 59 | ⊢  |
| : , :  |
51 | instantiation | 57, 58 | ⊢  |
| :  |
52 | instantiation | 59 | ⊢  |
| : , :  |
53 | assumption | | ⊢  |
54 | assumption | | ⊢  |
55 | instantiation | 60, 61 | , ⊢  |
| :  |
56 | assumption | | ⊢  |
57 | theorem | | ⊢  |
| proveit.linear_algebra.real_vec_set_is_vec_space |
58 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat3 |
59 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
60 | assumption | | ⊢  |
61 | instantiation | 62, 63, 64 | ⊢  |
| :  |
62 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nonneg_int_is_natural |
63 | instantiation | 79, 65, 77 | ⊢  |
| : , : , :  |
64 | instantiation | 66, 67 | ⊢  |
| : , :  |
65 | instantiation | 68, 75, 76 | ⊢  |
| : , :  |
66 | theorem | | ⊢  |
| proveit.numbers.ordering.relax_less |
67 | instantiation | 69, 70, 71 | ⊢  |
| : , : , :  |
68 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.int_interval_within_int |
69 | theorem | | ⊢  |
| proveit.numbers.ordering.transitivity_less_less_eq |
70 | instantiation | 72, 73 | ⊢  |
| :  |
71 | instantiation | 74, 75, 76, 77 | ⊢  |
| : , : , :  |
72 | theorem | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
73 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat2 |
74 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.interval_lower_bound |
75 | instantiation | 79, 80, 78 | ⊢  |
| : , : , :  |
76 | instantiation | 79, 80, 81 | ⊢  |
| : , : , :  |
77 | assumption | | ⊢  |
78 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat2 |
79 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
80 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nat_within_int |
81 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat4 |
*equality replacement requirements |