| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3* | , , , , ⊢  |
| | : , :  |
| 1 | reference | 32 | ⊢  |
| 2 | modus ponens | 4, 5 | , , , , ⊢  |
| 3 | instantiation | 6, 7, 8 | , , , , ⊢  |
| | : , : , :  |
| 4 | instantiation | 9, 78, 46, 49, 17, 30 | ⊢  |
| | : , : , : , : , : , : , : , : , : , : , :  |
| 5 | generalization | 10 | , , , , ⊢  |
| 6 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 7 | instantiation | 43, 11 | , ⊢  |
| | : , : , :  |
| 8 | instantiation | 29, 35, 78, 49, 50, 51, 30, 53, 54, 24, 56 | , , , , ⊢  |
| | : , : , : , : , : , : , : , : , : , :  |
| 9 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_distribution_over_summation_with_scalar_mult |
| 10 | instantiation | 12, 13, 14 | , , , , , ⊢  |
| | : , : , :  |
| 11 | instantiation | 32, 15 | , ⊢  |
| | : , :  |
| 12 | theorem | | ⊢  |
| | proveit.logic.equality.sub_left_side_into |
| 13 | instantiation | 16, 17, 35, 18 | , , , , , ⊢  |
| | : , : , : , :  |
| 14 | instantiation | 19, 20, 21, 22 | , , , , , ⊢  |
| | : , : , : , :  |
| 15 | modus ponens | 23, 24 | , ⊢  |
| 16 | theorem | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
| 17 | instantiation | 25, 39, 40, 51 | ⊢  |
| | : , : , :  |
| 18 | instantiation | 26, 27, 28 | , , , , ⊢  |
| | : , : , :  |
| 19 | theorem | | ⊢  |
| | proveit.logic.equality.four_chain_transitivity |
| 20 | instantiation | 29, 35, 78, 49, 50, 51, 30, 53, 54, 55, 56 | , , , , , ⊢  |
| | : , : , : , : , : , : , : , : , : , :  |
| 21 | instantiation | 31 | ⊢  |
| | :  |
| 22 | instantiation | 32, 33 | , , , , ⊢  |
| | : , :  |
| 23 | instantiation | 34, 46, 51, 35 | ⊢  |
| | : , : , : , : , : , : , :  |
| 24 | modus ponens | 36, 37 | ⊢  |
| 25 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
| 26 | theorem | | ⊢  |
| | proveit.logic.equality.sub_right_side_into |
| 27 | instantiation | 38, 39, 40, 51, 41, 53, 54, 55, 56 | , , , , ⊢  |
| | : , : , : , :  |
| 28 | instantiation | 42, 49, 78, 50, 51, 52, 53, 54, 55, 56 | , , , , ⊢  |
| | : , : , : , : , : , : , : , : , : , :  |
| 29 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.factor_scalar_from_tensor_prod |
| 30 | instantiation | 59 | ⊢  |
| | : , :  |
| 31 | axiom | | ⊢  |
| | proveit.logic.equality.equals_reflexivity |
| 32 | theorem | | ⊢  |
| | proveit.logic.equality.equals_reversal |
| 33 | instantiation | 43, 44 | , , , , ⊢  |
| | : , : , :  |
| 34 | theorem | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.distribution_over_vec_sum |
| 35 | assumption | | ⊢  |
| 36 | instantiation | 45, 46, 51 | ⊢  |
| | : , : , : , : , : , :  |
| 37 | generalization | 55 | ⊢  |
| 38 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
| 39 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat4 |
| 40 | instantiation | 47 | ⊢  |
| | : , : , : , :  |
| 41 | instantiation | 47 | ⊢  |
| | : , : , : , :  |
| 42 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_association |
| 43 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 44 | instantiation | 48, 49, 78, 50, 51, 52, 53, 54, 55, 56 | , , , , ⊢  |
| | : , : , : , : , : , : , : , : , : , :  |
| 45 | theorem | | ⊢  |
| | proveit.linear_algebra.addition.summation_closure |
| 46 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat1 |
| 47 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
| 48 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_disassociation |
| 49 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 50 | instantiation | 59 | ⊢  |
| | : , :  |
| 51 | instantiation | 57, 58 | ⊢  |
| | :  |
| 52 | instantiation | 59 | ⊢  |
| | : , :  |
| 53 | assumption | | ⊢  |
| 54 | assumption | | ⊢  |
| 55 | instantiation | 60, 61 | , ⊢  |
| | :  |
| 56 | assumption | | ⊢  |
| 57 | theorem | | ⊢  |
| | proveit.linear_algebra.real_vec_set_is_vec_space |
| 58 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 59 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 60 | assumption | | ⊢  |
| 61 | instantiation | 62, 63, 64 | ⊢  |
| | :  |
| 62 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nonneg_int_is_natural |
| 63 | instantiation | 79, 65, 77 | ⊢  |
| | : , : , :  |
| 64 | instantiation | 66, 67 | ⊢  |
| | : , :  |
| 65 | instantiation | 68, 75, 76 | ⊢  |
| | : , :  |
| 66 | theorem | | ⊢  |
| | proveit.numbers.ordering.relax_less |
| 67 | instantiation | 69, 70, 71 | ⊢  |
| | : , : , :  |
| 68 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.int_interval_within_int |
| 69 | theorem | | ⊢  |
| | proveit.numbers.ordering.transitivity_less_less_eq |
| 70 | instantiation | 72, 73 | ⊢  |
| | :  |
| 71 | instantiation | 74, 75, 76, 77 | ⊢  |
| | : , : , :  |
| 72 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
| 73 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 74 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.interval_lower_bound |
| 75 | instantiation | 79, 80, 78 | ⊢  |
| | : , : , :  |
| 76 | instantiation | 79, 80, 81 | ⊢  |
| | : , : , :  |
| 77 | assumption | | ⊢  |
| 78 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 79 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 80 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 81 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| *equality replacement requirements |