| step type | requirements | statement |
0 | modus ponens | 1, 2 | , , , , ⊢ |
1 | instantiation | 3, 64, 4, 35, 10, 22 | ⊢ |
| : , : , : , : , : , : , : , : , : , : , : |
2 | generalization | 5 | , , , , ⊢ |
3 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_distribution_over_summation_with_scalar_mult |
4 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
5 | instantiation | 6, 7, 8 | , , , , , ⊢ |
| : , : , : |
6 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
7 | instantiation | 9, 10, 21, 11 | , , , , , ⊢ |
| : , : , : , : |
8 | instantiation | 12, 13, 14, 15 | , , , , , ⊢ |
| : , : , : , : |
9 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
10 | instantiation | 16, 27, 28, 37 | ⊢ |
| : , : , : |
11 | instantiation | 17, 18, 19 | , , , , ⊢ |
| : , : , : |
12 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
13 | instantiation | 20, 21, 64, 35, 36, 37, 22, 39, 40, 41, 42 | , , , , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
14 | instantiation | 23 | ⊢ |
| : |
15 | instantiation | 24, 25 | , , , , ⊢ |
| : , : |
16 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
17 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
18 | instantiation | 26, 27, 28, 37, 29, 39, 40, 41, 42 | , , , , ⊢ |
| : , : , : , : |
19 | instantiation | 30, 35, 64, 36, 37, 38, 39, 40, 41, 42 | , , , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
20 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.factor_scalar_from_tensor_prod |
21 | assumption | | ⊢ |
22 | instantiation | 45 | ⊢ |
| : , : |
23 | axiom | | ⊢ |
| proveit.logic.equality.equals_reflexivity |
24 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
25 | instantiation | 31, 32 | , , , , ⊢ |
| : , : , : |
26 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
27 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat4 |
28 | instantiation | 33 | ⊢ |
| : , : , : , : |
29 | instantiation | 33 | ⊢ |
| : , : , : , : |
30 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_association |
31 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
32 | instantiation | 34, 35, 64, 36, 37, 38, 39, 40, 41, 42 | , , , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
33 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
34 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_disassociation |
35 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
36 | instantiation | 45 | ⊢ |
| : , : |
37 | instantiation | 43, 44 | ⊢ |
| : |
38 | instantiation | 45 | ⊢ |
| : , : |
39 | assumption | | ⊢ |
40 | assumption | | ⊢ |
41 | instantiation | 46, 47 | , ⊢ |
| : |
42 | assumption | | ⊢ |
43 | theorem | | ⊢ |
| proveit.linear_algebra.real_vec_set_is_vec_space |
44 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
45 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
46 | assumption | | ⊢ |
47 | instantiation | 48, 49, 50 | ⊢ |
| : |
48 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nonneg_int_is_natural |
49 | instantiation | 65, 51, 63 | ⊢ |
| : , : , : |
50 | instantiation | 52, 53 | ⊢ |
| : , : |
51 | instantiation | 54, 61, 62 | ⊢ |
| : , : |
52 | theorem | | ⊢ |
| proveit.numbers.ordering.relax_less |
53 | instantiation | 55, 56, 57 | ⊢ |
| : , : , : |
54 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.int_interval_within_int |
55 | theorem | | ⊢ |
| proveit.numbers.ordering.transitivity_less_less_eq |
56 | instantiation | 58, 59 | ⊢ |
| : |
57 | instantiation | 60, 61, 62, 63 | ⊢ |
| : , : , : |
58 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
59 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
60 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.interval_lower_bound |
61 | instantiation | 65, 66, 64 | ⊢ |
| : , : , : |
62 | instantiation | 65, 66, 67 | ⊢ |
| : , : , : |
63 | assumption | | ⊢ |
64 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
65 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
66 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
67 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |