| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3 | , , , , , ⊢  |
| | : , : , :  |
| 1 | theorem | | ⊢  |
| | proveit.logic.equality.sub_left_side_into |
| 2 | instantiation | 4, 5, 16, 6 | , , , , , ⊢  |
| | : , : , : , :  |
| 3 | instantiation | 7, 8, 9, 10 | , , , , , ⊢  |
| | : , : , : , :  |
| 4 | theorem | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
| 5 | instantiation | 11, 22, 23, 32 | ⊢  |
| | : , : , :  |
| 6 | instantiation | 12, 13, 14 | , , , , ⊢  |
| | : , : , :  |
| 7 | theorem | | ⊢  |
| | proveit.logic.equality.four_chain_transitivity |
| 8 | instantiation | 15, 16, 59, 30, 31, 32, 17, 34, 35, 36, 37 | , , , , , ⊢  |
| | : , : , : , : , : , : , : , : , : , :  |
| 9 | instantiation | 18 | ⊢  |
| | :  |
| 10 | instantiation | 19, 20 | , , , , ⊢  |
| | : , :  |
| 11 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
| 12 | theorem | | ⊢  |
| | proveit.logic.equality.sub_right_side_into |
| 13 | instantiation | 21, 22, 23, 32, 24, 34, 35, 36, 37 | , , , , ⊢  |
| | : , : , : , :  |
| 14 | instantiation | 25, 30, 59, 31, 32, 33, 34, 35, 36, 37 | , , , , ⊢  |
| | : , : , : , : , : , : , : , : , : , :  |
| 15 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.factor_scalar_from_tensor_prod |
| 16 | assumption | | ⊢  |
| 17 | instantiation | 40 | ⊢  |
| | : , :  |
| 18 | axiom | | ⊢  |
| | proveit.logic.equality.equals_reflexivity |
| 19 | theorem | | ⊢  |
| | proveit.logic.equality.equals_reversal |
| 20 | instantiation | 26, 27 | , , , , ⊢  |
| | : , : , :  |
| 21 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
| 22 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat4 |
| 23 | instantiation | 28 | ⊢  |
| | : , : , : , :  |
| 24 | instantiation | 28 | ⊢  |
| | : , : , : , :  |
| 25 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_association |
| 26 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 27 | instantiation | 29, 30, 59, 31, 32, 33, 34, 35, 36, 37 | , , , , ⊢  |
| | : , : , : , : , : , : , : , : , : , :  |
| 28 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
| 29 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_disassociation |
| 30 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 31 | instantiation | 40 | ⊢  |
| | : , :  |
| 32 | instantiation | 38, 39 | ⊢  |
| | :  |
| 33 | instantiation | 40 | ⊢  |
| | : , :  |
| 34 | assumption | | ⊢  |
| 35 | assumption | | ⊢  |
| 36 | instantiation | 41, 42 | , ⊢  |
| | :  |
| 37 | assumption | | ⊢  |
| 38 | theorem | | ⊢  |
| | proveit.linear_algebra.real_vec_set_is_vec_space |
| 39 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 40 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 41 | assumption | | ⊢  |
| 42 | instantiation | 43, 44, 45 | ⊢  |
| | :  |
| 43 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nonneg_int_is_natural |
| 44 | instantiation | 60, 46, 58 | ⊢  |
| | : , : , :  |
| 45 | instantiation | 47, 48 | ⊢  |
| | : , :  |
| 46 | instantiation | 49, 56, 57 | ⊢  |
| | : , :  |
| 47 | theorem | | ⊢  |
| | proveit.numbers.ordering.relax_less |
| 48 | instantiation | 50, 51, 52 | ⊢  |
| | : , : , :  |
| 49 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.int_interval_within_int |
| 50 | theorem | | ⊢  |
| | proveit.numbers.ordering.transitivity_less_less_eq |
| 51 | instantiation | 53, 54 | ⊢  |
| | :  |
| 52 | instantiation | 55, 56, 57, 58 | ⊢  |
| | : , : , :  |
| 53 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
| 54 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 55 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.interval_lower_bound |
| 56 | instantiation | 60, 61, 59 | ⊢  |
| | : , : , :  |
| 57 | instantiation | 60, 61, 62 | ⊢  |
| | : , : , :  |
| 58 | assumption | | ⊢  |
| 59 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 60 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 61 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 62 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |