| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | , , , , , ⊢ |
| : , : , : |
1 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
2 | instantiation | 4, 5, 16, 6 | , , , , , ⊢ |
| : , : , : , : |
3 | instantiation | 7, 8, 9, 10 | , , , , , ⊢ |
| : , : , : , : |
4 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
5 | instantiation | 11, 22, 23, 32 | ⊢ |
| : , : , : |
6 | instantiation | 12, 13, 14 | , , , , ⊢ |
| : , : , : |
7 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
8 | instantiation | 15, 16, 59, 30, 31, 32, 17, 34, 35, 36, 37 | , , , , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
9 | instantiation | 18 | ⊢ |
| : |
10 | instantiation | 19, 20 | , , , , ⊢ |
| : , : |
11 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
12 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
13 | instantiation | 21, 22, 23, 32, 24, 34, 35, 36, 37 | , , , , ⊢ |
| : , : , : , : |
14 | instantiation | 25, 30, 59, 31, 32, 33, 34, 35, 36, 37 | , , , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
15 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.factor_scalar_from_tensor_prod |
16 | assumption | | ⊢ |
17 | instantiation | 40 | ⊢ |
| : , : |
18 | axiom | | ⊢ |
| proveit.logic.equality.equals_reflexivity |
19 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
20 | instantiation | 26, 27 | , , , , ⊢ |
| : , : , : |
21 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
22 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat4 |
23 | instantiation | 28 | ⊢ |
| : , : , : , : |
24 | instantiation | 28 | ⊢ |
| : , : , : , : |
25 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_association |
26 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
27 | instantiation | 29, 30, 59, 31, 32, 33, 34, 35, 36, 37 | , , , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
28 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
29 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_disassociation |
30 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
31 | instantiation | 40 | ⊢ |
| : , : |
32 | instantiation | 38, 39 | ⊢ |
| : |
33 | instantiation | 40 | ⊢ |
| : , : |
34 | assumption | | ⊢ |
35 | assumption | | ⊢ |
36 | instantiation | 41, 42 | , ⊢ |
| : |
37 | assumption | | ⊢ |
38 | theorem | | ⊢ |
| proveit.linear_algebra.real_vec_set_is_vec_space |
39 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
40 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
41 | assumption | | ⊢ |
42 | instantiation | 43, 44, 45 | ⊢ |
| : |
43 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nonneg_int_is_natural |
44 | instantiation | 60, 46, 58 | ⊢ |
| : , : , : |
45 | instantiation | 47, 48 | ⊢ |
| : , : |
46 | instantiation | 49, 56, 57 | ⊢ |
| : , : |
47 | theorem | | ⊢ |
| proveit.numbers.ordering.relax_less |
48 | instantiation | 50, 51, 52 | ⊢ |
| : , : , : |
49 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.int_interval_within_int |
50 | theorem | | ⊢ |
| proveit.numbers.ordering.transitivity_less_less_eq |
51 | instantiation | 53, 54 | ⊢ |
| : |
52 | instantiation | 55, 56, 57, 58 | ⊢ |
| : , : , : |
53 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
54 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
55 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.interval_lower_bound |
56 | instantiation | 60, 61, 59 | ⊢ |
| : , : , : |
57 | instantiation | 60, 61, 62 | ⊢ |
| : , : , : |
58 | assumption | | ⊢ |
59 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
60 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
61 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
62 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |