logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2,  ⊢  
  : , :
1theorem  ⊢  
 proveit.logic.equality.equals_reversal
2modus ponens3, 4,  ⊢  
3instantiation5, 10, 11, 6  ⊢  
  : , : , : , : , : , : , :
4modus ponens7, 8  ⊢  
5theorem  ⊢  
 proveit.linear_algebra.scalar_multiplication.distribution_over_vec_sum
6assumption  ⊢  
7instantiation9, 10, 11  ⊢  
  : , : , : , : , : , :
8generalization12  ⊢  
9theorem  ⊢  
 proveit.linear_algebra.addition.summation_closure
10theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat1
11instantiation13, 14  ⊢  
  :
12instantiation15, 16,  ⊢  
  :
13theorem  ⊢  
 proveit.linear_algebra.real_vec_set_is_vec_space
14theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat3
15assumption  ⊢  
16instantiation17, 18, 19  ⊢  
  :
17theorem  ⊢  
 proveit.numbers.number_sets.integers.nonneg_int_is_natural
18instantiation34, 20, 32  ⊢  
  : , : , :
19instantiation21, 22  ⊢  
  : , :
20instantiation23, 30, 31  ⊢  
  : , :
21theorem  ⊢  
 proveit.numbers.ordering.relax_less
22instantiation24, 25, 26  ⊢  
  : , : , :
23theorem  ⊢  
 proveit.numbers.number_sets.integers.int_interval_within_int
24theorem  ⊢  
 proveit.numbers.ordering.transitivity_less_less_eq
25instantiation27, 28  ⊢  
  :
26instantiation29, 30, 31, 32  ⊢  
  : , : , :
27theorem  ⊢  
 proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos
28theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat2
29theorem  ⊢  
 proveit.numbers.number_sets.integers.interval_lower_bound
30instantiation34, 35, 33  ⊢  
  : , : , :
31instantiation34, 35, 36  ⊢  
  : , : , :
32assumption  ⊢  
33theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
34theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
35theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
36theorem  ⊢  
 proveit.numbers.numerals.decimals.nat4