logo

Expression of type Equals

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import fi, gamma, i, x, y, z
from proveit.linear_algebra import ScalarMult, TensorProd, VecSum
from proveit.logic import Equals
from proveit.numbers import Interval, four, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = VecSum(index_or_indices = [i], summand = fi, domain = Interval(two, four))
expr = Equals(TensorProd(x, y, ScalarMult(gamma, sub_expr1), z), ScalarMult(gamma, TensorProd(x, y, sub_expr1, z))).with_wrapping_at(1)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\begin{array}{c} \begin{array}{l} \left(x {\otimes} y {\otimes} \left(\gamma \cdot \left(\sum_{i=2}^{4} f\left(i\right)\right)\right) {\otimes} z\right) \\  = \left(\gamma \cdot \left(x {\otimes} y {\otimes} \left(\sum_{i=2}^{4} f\left(i\right)\right) {\otimes} z\right)\right) \end{array} \end{array}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()(1)('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 11
operands: 5
4Operationoperator: 9
operands: 6
5ExprTuple14, 15, 7, 17
6ExprTuple13, 8
7Operationoperator: 9
operands: 10
8Operationoperator: 11
operands: 12
9Literal
10ExprTuple13, 16
11Literal
12ExprTuple14, 15, 16, 17
13Variable
14Variable
15Variable
16Operationoperator: 18
operand: 20
17Variable
18Literal
19ExprTuple20
20Lambdaparameter: 28
body: 21
21Conditionalvalue: 22
condition: 23
22Operationoperator: 24
operand: 28
23Operationoperator: 26
operands: 27
24Variable
25ExprTuple28
26Literal
27ExprTuple28, 29
28Variable
29Operationoperator: 30
operands: 31
30Literal
31ExprTuple32, 33
32Literal
33Literal