| step type | requirements | statement |
0 | generalization | 1 | , , , , ⊢ |
1 | instantiation | 2, 3, 4 | , , , , , ⊢ |
| : , : , : |
2 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
3 | instantiation | 5, 6, 17, 7 | , , , , , ⊢ |
| : , : , : , : |
4 | instantiation | 8, 9, 10, 11 | , , , , , ⊢ |
| : , : , : , : |
5 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
6 | instantiation | 12, 23, 24, 33 | ⊢ |
| : , : , : |
7 | instantiation | 13, 14, 15 | , , , , ⊢ |
| : , : , : |
8 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
9 | instantiation | 16, 17, 60, 31, 32, 33, 18, 35, 36, 37, 38 | , , , , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
10 | instantiation | 19 | ⊢ |
| : |
11 | instantiation | 20, 21 | , , , , ⊢ |
| : , : |
12 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
13 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
14 | instantiation | 22, 23, 24, 33, 25, 35, 36, 37, 38 | , , , , ⊢ |
| : , : , : , : |
15 | instantiation | 26, 31, 60, 32, 33, 34, 35, 36, 37, 38 | , , , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
16 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.factor_scalar_from_tensor_prod |
17 | assumption | | ⊢ |
18 | instantiation | 41 | ⊢ |
| : , : |
19 | axiom | | ⊢ |
| proveit.logic.equality.equals_reflexivity |
20 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
21 | instantiation | 27, 28 | , , , , ⊢ |
| : , : , : |
22 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
23 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat4 |
24 | instantiation | 29 | ⊢ |
| : , : , : , : |
25 | instantiation | 29 | ⊢ |
| : , : , : , : |
26 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_association |
27 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
28 | instantiation | 30, 31, 60, 32, 33, 34, 35, 36, 37, 38 | , , , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
29 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
30 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_disassociation |
31 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
32 | instantiation | 41 | ⊢ |
| : , : |
33 | instantiation | 39, 40 | ⊢ |
| : |
34 | instantiation | 41 | ⊢ |
| : , : |
35 | assumption | | ⊢ |
36 | assumption | | ⊢ |
37 | instantiation | 42, 43 | , ⊢ |
| : |
38 | assumption | | ⊢ |
39 | theorem | | ⊢ |
| proveit.linear_algebra.real_vec_set_is_vec_space |
40 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
41 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
42 | assumption | | ⊢ |
43 | instantiation | 44, 45, 46 | ⊢ |
| : |
44 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nonneg_int_is_natural |
45 | instantiation | 61, 47, 59 | ⊢ |
| : , : , : |
46 | instantiation | 48, 49 | ⊢ |
| : , : |
47 | instantiation | 50, 57, 58 | ⊢ |
| : , : |
48 | theorem | | ⊢ |
| proveit.numbers.ordering.relax_less |
49 | instantiation | 51, 52, 53 | ⊢ |
| : , : , : |
50 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.int_interval_within_int |
51 | theorem | | ⊢ |
| proveit.numbers.ordering.transitivity_less_less_eq |
52 | instantiation | 54, 55 | ⊢ |
| : |
53 | instantiation | 56, 57, 58, 59 | ⊢ |
| : , : , : |
54 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
55 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
56 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.interval_lower_bound |
57 | instantiation | 61, 62, 60 | ⊢ |
| : , : , : |
58 | instantiation | 61, 62, 63 | ⊢ |
| : , : , : |
59 | assumption | | ⊢ |
60 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
61 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
62 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
63 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |