| step type | requirements | statement |
0 | generalization | 1 | ⊢ |
1 | instantiation | 2, 9, 3, 4, 5, 6 | ⊢ |
| : , : , : |
2 | theorem | | ⊢ |
| proveit.logic.booleans.disjunction.singular_constructive_dilemma |
3 | instantiation | 7, 9 | ⊢ |
| : |
4 | instantiation | 8, 9 | ⊢ |
| : |
5 | deduction | 10 | ⊢ |
6 | instantiation | 11, 12, 13 | ⊢ |
| : , : |
7 | conjecture | | ⊢ |
| proveit.logic.booleans.negation.closure |
8 | conjecture | | ⊢ |
| proveit.logic.booleans.unfold_is_bool |
9 | instantiation | 14 | ⊢ |
| : , : |
10 | instantiation | 15, 32, 16 | ⊢ |
| : , : |
11 | theorem | | ⊢ |
| proveit.logic.equality.rhs_via_equality |
12 | deduction | 17 | ⊢ |
13 | instantiation | 18, 19 | ⊢ |
| : , : , : |
14 | axiom | | ⊢ |
| proveit.logic.equality.equality_in_bool |
15 | theorem | | ⊢ |
| proveit.logic.booleans.disjunction.or_if_only_left |
16 | instantiation | 20, 21 | ⊢ |
| : , : |
17 | instantiation | 22, 23, 24 | , ⊢ |
| : , : |
18 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
19 | instantiation | 25 | ⊢ |
| : , : |
20 | conjecture | | ⊢ |
| proveit.logic.sets.membership.double_negated_membership |
21 | instantiation | 165, 166, 26 | ⊢ |
| : , : , : |
22 | theorem | | ⊢ |
| proveit.logic.booleans.disjunction.or_if_only_right |
23 | instantiation | 27, 31 | ⊢ |
| : , : |
24 | instantiation | 28, 29, 30, 31 | , ⊢ |
| : , : |
25 | axiom | | ⊢ |
| proveit.logic.equality.not_equals_def |
26 | instantiation | 41, 96, 32 | ⊢ |
| : , : , : |
27 | theorem | | ⊢ |
| proveit.logic.equality.unfold_not_equals |
28 | conjecture | | ⊢ |
| proveit.numbers.number_sets.real_numbers.not_int_if_not_int_in_interval |
29 | conjecture | | ⊢ |
| proveit.numbers.number_sets.integers.zero_is_int |
30 | instantiation | 54, 33, 34, 35, 36 | ⊢ |
| : , : , : |
31 | assumption | | ⊢ |
32 | assumption | | ⊢ |
33 | instantiation | 77, 114, 107 | ⊢ |
| : , : |
34 | instantiation | 77, 114, 115 | ⊢ |
| : , : |
35 | instantiation | 37, 107, 115, 46 | ⊢ |
| : , : , : |
36 | instantiation | 58, 38, 39 | ⊢ |
| : , : |
37 | conjecture | | ⊢ |
| proveit.numbers.number_sets.real_numbers.all_in_interval_oo__is__real |
38 | instantiation | 41, 40, 63 | ⊢ |
| : , : , : |
39 | instantiation | 41, 42, 43 | ⊢ |
| : , : , : |
40 | instantiation | 44, 107, 115, 46 | ⊢ |
| : , : , : |
41 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
42 | instantiation | 45, 107, 115, 46 | ⊢ |
| : , : , : |
43 | instantiation | 74, 89 | ⊢ |
| : |
44 | conjecture | | ⊢ |
| proveit.numbers.number_sets.real_numbers.interval_oo_lower_bound |
45 | conjecture | | ⊢ |
| proveit.numbers.number_sets.real_numbers.interval_oo_upper_bound |
46 | instantiation | 47, 48 | ⊢ |
| : |
47 | instantiation | 49, 167, 50, 51, 52 | ⊢ |
| : , : , : , : |
48 | assumption | | ⊢ |
49 | conjecture | | ⊢ |
| proveit.logic.sets.enumeration.true_for_each_then_true_for_all |
50 | instantiation | 145 | ⊢ |
| : , : |
51 | instantiation | 54, 107, 115, 108, 53 | ⊢ |
| : , : , : |
52 | instantiation | 54, 107, 115, 111, 55 | ⊢ |
| : , : , : |
53 | instantiation | 58, 56, 57 | ⊢ |
| : , : |
54 | conjecture | | ⊢ |
| proveit.numbers.number_sets.real_numbers.in_IntervalOO |
55 | instantiation | 58, 59, 60 | ⊢ |
| : , : |
56 | instantiation | 65, 107, 114, 61, 62, 63*, 64* | ⊢ |
| : , : , : |
57 | instantiation | 104, 114, 115, 116 | ⊢ |
| : , : , : |
58 | theorem | | ⊢ |
| proveit.logic.booleans.conjunction.and_if_both |
59 | instantiation | 65, 125, 66, 67, 68*, 69* | ⊢ |
| : , : , : |
60 | instantiation | 70, 71, 81 | ⊢ |
| : , : , : |
61 | instantiation | 77, 108, 115 | ⊢ |
| : , : |
62 | instantiation | 78, 114, 108, 115, 72, 73 | ⊢ |
| : , : , : |
63 | instantiation | 74, 88 | ⊢ |
| : |
64 | instantiation | 128, 75, 76 | ⊢ |
| : , : , : |
65 | conjecture | | ⊢ |
| proveit.numbers.addition.strong_bound_via_left_term_bound |
66 | instantiation | 77, 111, 135 | ⊢ |
| : , : |
67 | instantiation | 78, 125, 111, 135, 79, 106 | ⊢ |
| : , : , : |
68 | instantiation | 80, 101, 89, 81 | ⊢ |
| : , : , : |
69 | instantiation | 128, 82, 83 | ⊢ |
| : , : , : |
70 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
71 | instantiation | 84, 111, 135, 85, 86 | ⊢ |
| : , : , : |
72 | instantiation | 92, 114, 115, 116 | ⊢ |
| : , : , : |
73 | conjecture | | ⊢ |
| proveit.numbers.numerals.decimals.less_0_1 |
74 | conjecture | | ⊢ |
| proveit.numbers.addition.elim_zero_left |
75 | instantiation | 95, 96, 167, 144, 97, 87, 90, 89, 88 | ⊢ |
| : , : , : , : , : , : |
76 | instantiation | 100, 89, 90, 91 | ⊢ |
| : , : , : |
77 | conjecture | | ⊢ |
| proveit.numbers.addition.add_real_closure_bin |
78 | conjecture | | ⊢ |
| proveit.numbers.ordering.less_eq_add_right_strong |
79 | instantiation | 92, 125, 135, 126 | ⊢ |
| : , : , : |
80 | conjecture | | ⊢ |
| proveit.numbers.addition.subtraction.negated_add |
81 | instantiation | 93, 136, 164, 94* | ⊢ |
| : , : , : , : |
82 | instantiation | 95, 96, 167, 144, 97, 98, 102, 101, 99 | ⊢ |
| : , : , : , : , : , : |
83 | instantiation | 100, 101, 102, 103 | ⊢ |
| : , : , : |
84 | conjecture | | ⊢ |
| proveit.numbers.ordering.less_add_right |
85 | instantiation | 104, 125, 135, 126 | ⊢ |
| : , : , : |
86 | instantiation | 105, 106 | ⊢ |
| : , : |
87 | instantiation | 145 | ⊢ |
| : , : |
88 | instantiation | 165, 152, 107 | ⊢ |
| : , : , : |
89 | instantiation | 165, 152, 115 | ⊢ |
| : , : , : |
90 | instantiation | 165, 152, 108 | ⊢ |
| : , : , : |
91 | instantiation | 112 | ⊢ |
| : |
92 | conjecture | | ⊢ |
| proveit.numbers.number_sets.real_numbers.interval_co_lower_bound |
93 | conjecture | | ⊢ |
| proveit.numbers.addition.rational_pair_addition |
94 | instantiation | 128, 109, 110 | ⊢ |
| : , : , : |
95 | conjecture | | ⊢ |
| proveit.numbers.addition.disassociation |
96 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
97 | conjecture | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
98 | instantiation | 145 | ⊢ |
| : , : |
99 | instantiation | 165, 152, 125 | ⊢ |
| : , : , : |
100 | conjecture | | ⊢ |
| proveit.numbers.addition.subtraction.add_cancel_triple_23 |
101 | instantiation | 165, 152, 135 | ⊢ |
| : , : , : |
102 | instantiation | 165, 152, 111 | ⊢ |
| : , : , : |
103 | instantiation | 112 | ⊢ |
| : |
104 | conjecture | | ⊢ |
| proveit.numbers.number_sets.real_numbers.interval_co_upper_bound |
105 | conjecture | | ⊢ |
| proveit.numbers.ordering.relax_less |
106 | instantiation | 113, 151 | ⊢ |
| : |
107 | instantiation | 134, 115 | ⊢ |
| : |
108 | instantiation | 124, 114, 115, 116 | ⊢ |
| : , : , : |
109 | instantiation | 137, 167, 117, 118, 119, 120 | ⊢ |
| : , : , : , : |
110 | instantiation | 121, 122, 123 | ⊢ |
| : |
111 | instantiation | 124, 125, 135, 126 | ⊢ |
| : , : , : |
112 | axiom | | ⊢ |
| proveit.logic.equality.equals_reflexivity |
113 | conjecture | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.positive_if_in_rational_pos |
114 | conjecture | | ⊢ |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
115 | instantiation | 165, 158, 127 | ⊢ |
| : , : , : |
116 | conjecture | | ⊢ |
| proveit.physics.quantum.QPE._scaled_delta_b_floor_in_interval |
117 | instantiation | 145 | ⊢ |
| : , : |
118 | instantiation | 145 | ⊢ |
| : , : |
119 | instantiation | 128, 129, 130 | ⊢ |
| : , : , : |
120 | conjecture | | ⊢ |
| proveit.numbers.numerals.decimals.mult_2_2 |
121 | conjecture | | ⊢ |
| proveit.numbers.division.frac_cancel_complete |
122 | instantiation | 165, 152, 131 | ⊢ |
| : , : , : |
123 | instantiation | 132, 133 | ⊢ |
| : |
124 | conjecture | | ⊢ |
| proveit.numbers.number_sets.real_numbers.all_in_interval_co__is__real |
125 | instantiation | 134, 135 | ⊢ |
| : |
126 | conjecture | | ⊢ |
| proveit.physics.quantum.QPE._scaled_delta_b_round_in_interval |
127 | instantiation | 165, 163, 136 | ⊢ |
| : , : , : |
128 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
129 | instantiation | 137, 167, 138, 139, 140, 141 | ⊢ |
| : , : , : , : |
130 | conjecture | | ⊢ |
| proveit.numbers.numerals.decimals.add_2_2 |
131 | instantiation | 165, 158, 142 | ⊢ |
| : , : , : |
132 | conjecture | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
133 | conjecture | | ⊢ |
| proveit.numbers.numerals.decimals.posnat4 |
134 | conjecture | | ⊢ |
| proveit.numbers.negation.real_closure |
135 | instantiation | 165, 158, 143 | ⊢ |
| : , : , : |
136 | instantiation | 165, 166, 144 | ⊢ |
| : , : , : |
137 | axiom | | ⊢ |
| proveit.core_expr_types.operations.operands_substitution |
138 | instantiation | 145 | ⊢ |
| : , : |
139 | instantiation | 145 | ⊢ |
| : , : |
140 | instantiation | 146, 148 | ⊢ |
| : |
141 | instantiation | 147, 148 | ⊢ |
| : |
142 | instantiation | 165, 163, 149 | ⊢ |
| : , : , : |
143 | instantiation | 165, 150, 151 | ⊢ |
| : , : , : |
144 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
145 | conjecture | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
146 | conjecture | | ⊢ |
| proveit.numbers.multiplication.elim_one_left |
147 | conjecture | | ⊢ |
| proveit.numbers.multiplication.elim_one_right |
148 | instantiation | 165, 152, 153 | ⊢ |
| : , : , : |
149 | instantiation | 165, 166, 154 | ⊢ |
| : , : , : |
150 | conjecture | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational |
151 | instantiation | 155, 156, 157 | ⊢ |
| : , : |
152 | conjecture | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
153 | instantiation | 165, 158, 159 | ⊢ |
| : , : , : |
154 | conjecture | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
155 | conjecture | | ⊢ |
| proveit.numbers.division.div_rational_pos_closure |
156 | instantiation | 165, 161, 160 | ⊢ |
| : , : , : |
157 | instantiation | 165, 161, 162 | ⊢ |
| : , : , : |
158 | conjecture | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
159 | instantiation | 165, 163, 164 | ⊢ |
| : , : , : |
160 | conjecture | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
161 | conjecture | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nat_pos_within_rational_pos |
162 | conjecture | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
163 | conjecture | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
164 | instantiation | 165, 166, 167 | ⊢ |
| : , : , : |
165 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
166 | conjecture | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
167 | conjecture | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
*equality replacement requirements |