logo
In [1]:
import proveit
from proveit import defaults
from proveit import C
from proveit.logic import TRUE, Equals
from proveit.logic.booleans.disjunction import singular_constructive_dilemma_lemma
theory = proveit.Theory() # the theorem's theory
In [2]:
%proving singular_constructive_dilemma
With these allowed/disallowed theorem/theory presumptions (e.g., to avoid circular dependencies), we begin our proof of
singular_constructive_dilemma:
(see dependencies)
In [3]:
defaults.assumptions = singular_constructive_dilemma.all_conditions()
defaults.assumptions:

We will use the constrained singular constructive dilemma as a convenient Lemma to prove some $C=\top$ and deriving $C$ from there.

In [4]:
singular_constructive_dilemma_lemma
In [5]:
singular_constructive_dilemma_lemma.instantiate({C:Equals(C, TRUE)})
, , , ,  ⊢  
singular_constructive_dilemma may now be readily provable (assuming required theorems are usable).  Simply execute "%qed".
In [6]:
%qed
proveit.logic.booleans.disjunction.singular_constructive_dilemma has been proven.
Out[6]:
 step typerequirementsstatement
0generalization1  ⊢  
1instantiation2, 3, , , ,  ⊢  
  :
2axiom  ⊢  
 proveit.logic.booleans.eq_true_elim
3instantiation4, 5, 6, 7, 8, 9, 10, , , ,  ⊢  
  : , : , :
4theorem  ⊢  
 proveit.logic.booleans.disjunction.singular_constructive_dilemma_lemma
5assumption  ⊢  
6assumption  ⊢  
7instantiation11  ⊢  
  : , :
8assumption  ⊢  
9deduction12  ⊢  
10deduction13  ⊢  
11axiom  ⊢  
 proveit.logic.equality.equality_in_bool
12instantiation15, 14,  ⊢  
  :
13instantiation15, 16,  ⊢  
  :
14modus ponens17, 18,  ⊢  
15axiom  ⊢  
 proveit.logic.booleans.eq_true_intro
16modus ponens19, 20,  ⊢  
17assumption  ⊢  
18assumption  ⊢  
19assumption  ⊢  
20assumption  ⊢