| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4, 5 | ⊢ |
| : , : , : |
1 | conjecture | | ⊢ |
| proveit.numbers.number_sets.real_numbers.in_IntervalCO |
2 | reference | 20 | ⊢ |
3 | reference | 120 | ⊢ |
4 | instantiation | 12, 6, 41 | ⊢ |
| : , : , : |
5 | instantiation | 7, 8, 9 | ⊢ |
| : , : |
6 | instantiation | 129, 157, 10 | ⊢ |
| : , : |
7 | theorem | | ⊢ |
| proveit.logic.booleans.conjunction.and_if_both |
8 | instantiation | 12, 11, 14 | ⊢ |
| : , : , : |
9 | instantiation | 12, 13, 14 | ⊢ |
| : , : , : |
10 | instantiation | 118, 130, 15 | ⊢ |
| : , : |
11 | instantiation | 16, 20, 33, 21, 17, 18*, 23* | ⊢ |
| : , : , : |
12 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
13 | instantiation | 19, 20, 21, 132, 22, 23*, 24* | ⊢ |
| : , : , : |
14 | instantiation | 92, 25, 26 | ⊢ |
| : , : , : |
15 | instantiation | 30, 82 | ⊢ |
| : |
16 | conjecture | | ⊢ |
| proveit.numbers.addition.weak_bound_via_left_term_bound |
17 | instantiation | 27, 33, 132, 34 | ⊢ |
| : , : , : |
18 | instantiation | 92, 28, 29 | ⊢ |
| : , : , : |
19 | conjecture | | ⊢ |
| proveit.numbers.addition.strong_bound_via_left_term_bound |
20 | instantiation | 30, 120 | ⊢ |
| : |
21 | instantiation | 31, 33, 132, 34 | ⊢ |
| : , : , : |
22 | instantiation | 32, 33, 132, 34 | ⊢ |
| : , : , : |
23 | instantiation | 124, 35, 36 | ⊢ |
| : , : , : |
24 | instantiation | 37, 153, 38, 155, 106*, 39*, 40* | ⊢ |
| : , : , : , : |
25 | instantiation | 92, 41, 42 | ⊢ |
| : , : , : |
26 | instantiation | 92, 43, 44 | ⊢ |
| : , : , : |
27 | conjecture | | ⊢ |
| proveit.numbers.number_sets.real_numbers.interval_co_lower_bound |
28 | instantiation | 45, 52 | ⊢ |
| : |
29 | instantiation | 46, 52, 47 | ⊢ |
| : , : |
30 | conjecture | | ⊢ |
| proveit.numbers.negation.real_closure |
31 | conjecture | | ⊢ |
| proveit.numbers.number_sets.real_numbers.all_in_interval_co__is__real |
32 | conjecture | | ⊢ |
| proveit.numbers.number_sets.real_numbers.interval_co_upper_bound |
33 | conjecture | | ⊢ |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
34 | instantiation | 48, 110, 49* | ⊢ |
| : |
35 | instantiation | 65, 66, 50, 158, 67, 51, 69, 72, 70, 52 | ⊢ |
| : , : , : , : , : , : |
36 | instantiation | 53, 158, 66, 67, 69, 72, 70, 54 | ⊢ |
| : , : , : , : , : , : , : , : |
37 | conjecture | | ⊢ |
| proveit.numbers.addition.rational_pair_addition |
38 | instantiation | 55, 153 | ⊢ |
| : |
39 | instantiation | 56, 116, 88, 134 | ⊢ |
| : , : |
40 | instantiation | 124, 57, 58 | ⊢ |
| : , : , : |
41 | instantiation | 138, 59 | ⊢ |
| : , : , : |
42 | instantiation | 60, 158, 66, 67, 151, 61, 62, 63* | ⊢ |
| : , : , : , : , : , : |
43 | axiom | | ⊢ |
| proveit.physics.quantum.QPE._best_round_def |
44 | instantiation | 64, 119 | ⊢ |
| : |
45 | conjecture | | ⊢ |
| proveit.numbers.addition.elim_zero_right |
46 | conjecture | | ⊢ |
| proveit.numbers.addition.commutation |
47 | conjecture | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.zero_is_complex |
48 | conjecture | | ⊢ |
| proveit.numbers.rounding.real_minus_floor_interval |
49 | instantiation | 65, 66, 161, 158, 67, 68, 69, 72, 70 | ⊢ |
| : , : , : , : , : , : |
50 | conjecture | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
51 | instantiation | 71 | ⊢ |
| : , : , : |
52 | instantiation | 85, 72 | ⊢ |
| : |
53 | conjecture | | ⊢ |
| proveit.numbers.addition.subtraction.add_cancel_general |
54 | instantiation | 73 | ⊢ |
| : |
55 | conjecture | | ⊢ |
| proveit.numbers.negation.int_closure |
56 | conjecture | | ⊢ |
| proveit.numbers.division.neg_frac_neg_numerator |
57 | instantiation | 74, 161, 75, 76, 77, 78 | ⊢ |
| : , : , : , : |
58 | instantiation | 79, 116, 88, 80 | ⊢ |
| : , : , : |
59 | instantiation | 81, 152 | ⊢ |
| : |
60 | conjecture | | ⊢ |
| proveit.numbers.multiplication.distribute_through_subtract |
61 | instantiation | 159, 156, 130 | ⊢ |
| : , : , : |
62 | instantiation | 159, 156, 82 | ⊢ |
| : , : , : |
63 | instantiation | 92, 83, 84 | ⊢ |
| : , : , : |
64 | conjecture | | ⊢ |
| proveit.numbers.rounding.round_in_terms_of_floor |
65 | conjecture | | ⊢ |
| proveit.numbers.addition.disassociation |
66 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
67 | conjecture | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
68 | instantiation | 87 | ⊢ |
| : , : |
69 | instantiation | 159, 156, 119 | ⊢ |
| : , : , : |
70 | instantiation | 85, 86 | ⊢ |
| : |
71 | conjecture | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
72 | instantiation | 159, 156, 120 | ⊢ |
| : , : , : |
73 | axiom | | ⊢ |
| proveit.logic.equality.equals_reflexivity |
74 | axiom | | ⊢ |
| proveit.core_expr_types.operations.operands_substitution |
75 | instantiation | 87 | ⊢ |
| : , : |
76 | instantiation | 87 | ⊢ |
| : , : |
77 | instantiation | 150, 88 | ⊢ |
| : |
78 | instantiation | 89, 116, 90* | ⊢ |
| : , : |
79 | conjecture | | ⊢ |
| proveit.numbers.addition.subtraction.subtract_from_add |
80 | conjecture | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
81 | axiom | | ⊢ |
| proveit.physics.quantum.QPE._delta_b_def |
82 | instantiation | 131, 128, 157, 91 | ⊢ |
| : , : |
83 | instantiation | 92, 93, 94 | ⊢ |
| : , : , : |
84 | instantiation | 95, 96, 97, 98 | ⊢ |
| : , : , : , : |
85 | conjecture | | ⊢ |
| proveit.numbers.negation.complex_closure |
86 | instantiation | 162, 99, 100 | ⊢ |
| : , : , : |
87 | conjecture | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
88 | instantiation | 159, 156, 133 | ⊢ |
| : , : , : |
89 | conjecture | | ⊢ |
| proveit.numbers.multiplication.mult_neg_right |
90 | instantiation | 141, 116 | ⊢ |
| : |
91 | instantiation | 146, 164 | ⊢ |
| : |
92 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
93 | instantiation | 101, 116, 117, 102, 103 | ⊢ |
| : , : , : , : , : |
94 | instantiation | 124, 104, 105 | ⊢ |
| : , : , : |
95 | conjecture | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
96 | instantiation | 138, 106 | ⊢ |
| : , : , : |
97 | instantiation | 138, 107 | ⊢ |
| : , : , : |
98 | instantiation | 150, 117 | ⊢ |
| : |
99 | instantiation | 165, 108 | ⊢ |
| : , : |
100 | instantiation | 109, 110 | ⊢ |
| : |
101 | conjecture | | ⊢ |
| proveit.numbers.division.mult_frac_cancel_numer_left |
102 | instantiation | 159, 112, 111 | ⊢ |
| : , : , : |
103 | instantiation | 159, 112, 113 | ⊢ |
| : , : , : |
104 | instantiation | 138, 114 | ⊢ |
| : , : , : |
105 | instantiation | 138, 115 | ⊢ |
| : , : , : |
106 | instantiation | 140, 116 | ⊢ |
| : |
107 | instantiation | 140, 117 | ⊢ |
| : |
108 | conjecture | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.int_within_complex |
109 | axiom | | ⊢ |
| proveit.numbers.rounding.floor_is_an_int |
110 | instantiation | 118, 119, 120 | ⊢ |
| : , : |
111 | instantiation | 159, 122, 121 | ⊢ |
| : , : , : |
112 | conjecture | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
113 | instantiation | 159, 122, 123 | ⊢ |
| : , : , : |
114 | instantiation | 124, 125, 126 | ⊢ |
| : , : , : |
115 | instantiation | 138, 127 | ⊢ |
| : , : , : |
116 | instantiation | 159, 156, 132 | ⊢ |
| : , : , : |
117 | instantiation | 159, 156, 128 | ⊢ |
| : , : , : |
118 | conjecture | | ⊢ |
| proveit.numbers.addition.add_real_closure_bin |
119 | instantiation | 129, 157, 130 | ⊢ |
| : , : |
120 | instantiation | 131, 132, 133, 134 | ⊢ |
| : , : |
121 | instantiation | 159, 136, 135 | ⊢ |
| : , : , : |
122 | conjecture | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
123 | instantiation | 159, 136, 137 | ⊢ |
| : , : , : |
124 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
125 | instantiation | 138, 139 | ⊢ |
| : , : , : |
126 | instantiation | 140, 151 | ⊢ |
| : |
127 | instantiation | 141, 151 | ⊢ |
| : |
128 | instantiation | 159, 144, 142 | ⊢ |
| : , : , : |
129 | conjecture | | ⊢ |
| proveit.numbers.multiplication.mult_real_closure_bin |
130 | conjecture | | ⊢ |
| proveit.physics.quantum.QPE._phase_is_real |
131 | conjecture | | ⊢ |
| proveit.numbers.division.div_real_closure |
132 | instantiation | 159, 144, 143 | ⊢ |
| : , : , : |
133 | instantiation | 159, 144, 145 | ⊢ |
| : , : , : |
134 | instantiation | 146, 147 | ⊢ |
| : |
135 | instantiation | 159, 148, 164 | ⊢ |
| : , : , : |
136 | conjecture | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
137 | instantiation | 159, 148, 149 | ⊢ |
| : , : , : |
138 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
139 | instantiation | 150, 151 | ⊢ |
| : |
140 | conjecture | | ⊢ |
| proveit.numbers.division.frac_one_denom |
141 | conjecture | | ⊢ |
| proveit.numbers.multiplication.elim_one_right |
142 | instantiation | 159, 154, 152 | ⊢ |
| : , : , : |
143 | instantiation | 159, 154, 153 | ⊢ |
| : , : , : |
144 | conjecture | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
145 | instantiation | 159, 154, 155 | ⊢ |
| : , : , : |
146 | conjecture | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
147 | conjecture | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
148 | conjecture | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
149 | conjecture | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
150 | conjecture | | ⊢ |
| proveit.numbers.multiplication.elim_one_left |
151 | instantiation | 159, 156, 157 | ⊢ |
| : , : , : |
152 | conjecture | | ⊢ |
| proveit.physics.quantum.QPE._best_round_is_int |
153 | instantiation | 159, 160, 158 | ⊢ |
| : , : , : |
154 | conjecture | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
155 | instantiation | 159, 160, 161 | ⊢ |
| : , : , : |
156 | conjecture | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
157 | instantiation | 162, 163, 164 | ⊢ |
| : , : , : |
158 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
159 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
160 | conjecture | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
161 | conjecture | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
162 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
163 | instantiation | 165, 166 | ⊢ |
| : , : |
164 | conjecture | | ⊢ |
| proveit.physics.quantum.QPE._two_pow_t_is_nat_pos |
165 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.relax_proper_subset |
166 | conjecture | | ⊢ |
| proveit.numbers.number_sets.real_numbers.nat_pos_within_real |
*equality replacement requirements |