logo
In [1]:
import proveit
from proveit import defaults, Lambda
from proveit import x, y, P, Q, X
from proveit.logic.equality import sub_right_side_into
theory = proveit.Theory() # the theorem's theory
In [2]:
%proving rhs_via_equality
With these allowed/disallowed theorem/theory presumptions (e.g., to avoid circular dependencies), we begin our proof of
rhs_via_equality:
(see dependencies)
In [3]:
defaults.assumptions = rhs_via_equality.all_conditions()
defaults.assumptions:
In [4]:
sub_right_side_into
In [5]:
sub_right_side_into.instantiate({P:Lambda(X, X), x:P, y:Q})
rhs_via_equality may now be readily provable (assuming required theorems are usable).  Simply execute "%qed".
In [6]:
%qed
proveit.logic.equality.rhs_via_equality has been proven.
Out[6]:
 step typerequirementsstatement
0generalization1  ⊢  
1instantiation2, 3, 4,  ⊢  
  : , : , :
2conjecture  ⊢  
 proveit.logic.equality.sub_right_side_into
3assumption  ⊢  
4assumption  ⊢