import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import k, m
from proveit.logic import Equals, Forall
from proveit.numbers import Exp, Mult, Neg, Sum, e, frac, i, one, pi, two
from proveit.physics.quantum.QPE import _alpha_m, _m_domain, _phase, _two_pow_t
# build up the expression from sub-expressions
expr = Forall(instance_param_or_params = [m], instance_expr = Equals(_alpha_m, Mult(frac(one, _two_pow_t), Sum(index_or_indices = [k], summand = Mult(Exp(e, Neg(frac(Mult(two, pi, i, k, m), _two_pow_t))), Exp(e, Mult(two, pi, i, _phase, k))), domain = _m_domain))), domain = _m_domain)
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
stored_expr.style_options()
# display the expression information
stored_expr.expr_info()