logo

Expression of type Equals

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import k, m
from proveit.logic import Equals
from proveit.numbers import Exp, Mult, Neg, Sum, e, frac, i, one, pi, two
from proveit.physics.quantum.QPE import _alpha_m, _m_domain, _phase, _two_pow_t
In [2]:
# build up the expression from sub-expressions
expr = Equals(_alpha_m, Mult(frac(one, _two_pow_t), Sum(index_or_indices = [k], summand = Mult(Exp(e, Neg(frac(Mult(two, pi, i, k, m), _two_pow_t))), Exp(e, Mult(two, pi, i, _phase, k))), domain = _m_domain)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\alpha_{m} = \left(\frac{1}{2^{t}} \cdot \left(\sum_{k = 0}^{2^{t} - 1} \left(\mathsf{e}^{-\frac{2 \cdot \pi \cdot \mathsf{i} \cdot k \cdot m}{2^{t}}} \cdot \mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot \varphi \cdot k}\right)\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 5
operand: 54
4Operationoperator: 47
operands: 7
5Literal
6ExprTuple54
7ExprTuple8, 9
8Operationoperator: 40
operands: 10
9Operationoperator: 11
operand: 13
10ExprTuple46, 45
11Literal
12ExprTuple13
13Lambdaparameter: 53
body: 15
14ExprTuple53
15Conditionalvalue: 16
condition: 17
16Operationoperator: 47
operands: 18
17Operationoperator: 19
operands: 20
18ExprTuple21, 22
19Literal
20ExprTuple53, 23
21Operationoperator: 49
operands: 24
22Operationoperator: 49
operands: 25
23Operationoperator: 26
operands: 27
24ExprTuple29, 28
25ExprTuple29, 30
26Literal
27ExprTuple31, 32
28Operationoperator: 42
operand: 37
29Literal
30Operationoperator: 47
operands: 34
31Literal
32Operationoperator: 35
operands: 36
33ExprTuple37
34ExprTuple55, 51, 52, 38, 53
35Literal
36ExprTuple45, 39
37Operationoperator: 40
operands: 41
38Literal
39Operationoperator: 42
operand: 46
40Literal
41ExprTuple44, 45
42Literal
43ExprTuple46
44Operationoperator: 47
operands: 48
45Operationoperator: 49
operands: 50
46Literal
47Literal
48ExprTuple55, 51, 52, 53, 54
49Literal
50ExprTuple55, 56
51Literal
52Literal
53Variable
54Variable
55Literal
56Literal