logo

Expression of type Exp

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import k, m
from proveit.numbers import Exp, Mult, Neg, e, frac, i, pi, two
from proveit.physics.quantum.QPE import _two_pow_t
In [2]:
# build up the expression from sub-expressions
expr = Exp(e, Neg(frac(Mult(two, pi, i, k, m), _two_pow_t)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\mathsf{e}^{-\frac{2 \cdot \pi \cdot \mathsf{i} \cdot k \cdot m}{2^{t}}}
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 13
operands: 1
1ExprTuple2, 3
2Literal
3Operationoperator: 4
operand: 6
4Literal
5ExprTuple6
6Operationoperator: 7
operands: 8
7Literal
8ExprTuple9, 10
9Operationoperator: 11
operands: 12
10Operationoperator: 13
operands: 14
11Literal
12ExprTuple19, 15, 16, 17, 18
13Literal
14ExprTuple19, 20
15Literal
16Literal
17Variable
18Variable
19Literal
20Literal