logo

Expression of type ExprTuple

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, k, m
from proveit.numbers import Mult, Neg, e, frac, i, pi, two
from proveit.physics.quantum.QPE import _two_pow_t
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(e, Neg(frac(Mult(two, pi, i, k, m), _two_pow_t)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\mathsf{e}, -\frac{2 \cdot \pi \cdot \mathsf{i} \cdot k \cdot m}{2^{t}}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Literal
2Operationoperator: 3
operand: 5
3Literal
4ExprTuple5
5Operationoperator: 6
operands: 7
6Literal
7ExprTuple8, 9
8Operationoperator: 10
operands: 11
9Operationoperator: 12
operands: 13
10Literal
11ExprTuple18, 14, 15, 16, 17
12Literal
13ExprTuple18, 19
14Literal
15Literal
16Variable
17Variable
18Literal
19Literal