logo

Expression of type Neg

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import k, m
from proveit.numbers import Mult, Neg, frac, i, pi, two
from proveit.physics.quantum.QPE import _two_pow_t
In [2]:
# build up the expression from sub-expressions
expr = Neg(frac(Mult(two, pi, i, k, m), _two_pow_t))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
-\frac{2 \cdot \pi \cdot \mathsf{i} \cdot k \cdot m}{2^{t}}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
notation_in_addWhen contained in an Add, use 'subtraction' or 'explicit_negation': For example, 'a - b' versus 'a + (-b)'.subtractionsubtraction('with_subtraction_notation', 'without_subtraction_notation')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operand: 3
1Literal
2ExprTuple3
3Operationoperator: 4
operands: 5
4Literal
5ExprTuple6, 7
6Operationoperator: 8
operands: 9
7Operationoperator: 10
operands: 11
8Literal
9ExprTuple16, 12, 13, 14, 15
10Literal
11ExprTuple16, 17
12Literal
13Literal
14Variable
15Variable
16Literal
17Literal