logo

Expression of type Mult

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import k, m
from proveit.numbers import Exp, Mult, Neg, Sum, e, frac, i, one, pi, two
from proveit.physics.quantum.QPE import _m_domain, _phase, _two_pow_t
In [2]:
# build up the expression from sub-expressions
expr = Mult(frac(one, _two_pow_t), Sum(index_or_indices = [k], summand = Mult(Exp(e, Neg(frac(Mult(two, pi, i, k, m), _two_pow_t))), Exp(e, Mult(two, pi, i, _phase, k))), domain = _m_domain))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\frac{1}{2^{t}} \cdot \left(\sum_{k = 0}^{2^{t} - 1} \left(\mathsf{e}^{-\frac{2 \cdot \pi \cdot \mathsf{i} \cdot k \cdot m}{2^{t}}} \cdot \mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot \varphi \cdot k}\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 41
operands: 1
1ExprTuple2, 3
2Operationoperator: 34
operands: 4
3Operationoperator: 5
operand: 7
4ExprTuple40, 39
5Literal
6ExprTuple7
7Lambdaparameter: 47
body: 9
8ExprTuple47
9Conditionalvalue: 10
condition: 11
10Operationoperator: 41
operands: 12
11Operationoperator: 13
operands: 14
12ExprTuple15, 16
13Literal
14ExprTuple47, 17
15Operationoperator: 43
operands: 18
16Operationoperator: 43
operands: 19
17Operationoperator: 20
operands: 21
18ExprTuple23, 22
19ExprTuple23, 24
20Literal
21ExprTuple25, 26
22Operationoperator: 36
operand: 31
23Literal
24Operationoperator: 41
operands: 28
25Literal
26Operationoperator: 29
operands: 30
27ExprTuple31
28ExprTuple49, 45, 46, 32, 47
29Literal
30ExprTuple39, 33
31Operationoperator: 34
operands: 35
32Literal
33Operationoperator: 36
operand: 40
34Literal
35ExprTuple38, 39
36Literal
37ExprTuple40
38Operationoperator: 41
operands: 42
39Operationoperator: 43
operands: 44
40Literal
41Literal
42ExprTuple49, 45, 46, 47, 48
43Literal
44ExprTuple49, 50
45Literal
46Literal
47Variable
48Variable
49Literal
50Literal