| step type | requirements | statement |
0 | generalization | 1 | ⊢ |
1 | instantiation | 2, 3 | ⊢ |
| : , : , : |
2 | axiom | | ⊢ |
| proveit.core_expr_types.conditionals.conditional_substitution |
3 | deduction | 4 | ⊢ |
4 | instantiation | 83, 149, 144, 84, 5, 85, 6, 7, 8 | , ⊢ |
| : , : , : , : , : , : |
5 | instantiation | 100 | ⊢ |
| : , : |
6 | instantiation | 18, 13, 9 | ⊢ |
| : , : |
7 | instantiation | 34, 10, 11, 12 | ⊢ |
| : , : |
8 | instantiation | 18, 13, 14 | , ⊢ |
| : , : |
9 | instantiation | 69, 15, 16 | ⊢ |
| : , : , : |
10 | instantiation | 147, 110, 17 | ⊢ |
| : , : , : |
11 | instantiation | 18, 93, 19 | ⊢ |
| : , : |
12 | instantiation | 20, 21, 22 | ⊢ |
| : , : , : |
13 | instantiation | 147, 110, 23 | ⊢ |
| : , : , : |
14 | instantiation | 24, 25 | , ⊢ |
| : |
15 | instantiation | 97, 72, 26 | ⊢ |
| : , : |
16 | instantiation | 58, 27, 28 | ⊢ |
| : , : , : |
17 | instantiation | 147, 121, 29 | ⊢ |
| : , : , : |
18 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_complex_closure |
19 | instantiation | 34, 67, 93, 44 | ⊢ |
| : , : |
20 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
21 | instantiation | 30, 104, 31 | ⊢ |
| : , : |
22 | instantiation | 64, 32 | ⊢ |
| : , : , : |
23 | instantiation | 147, 113, 33 | ⊢ |
| : , : , : |
24 | theorem | | ⊢ |
| proveit.numbers.negation.complex_closure |
25 | instantiation | 34, 35, 36, 37 | , ⊢ |
| : , : |
26 | instantiation | 69, 38, 39 | ⊢ |
| : , : , : |
27 | instantiation | 83, 149, 73, 84, 40, 85, 72, 98, 63, 99 | ⊢ |
| : , : , : , : , : , : |
28 | instantiation | 83, 84, 144, 73, 85, 74, 40, 93, 88, 98, 63, 99 | ⊢ |
| : , : , : , : , : , : |
29 | instantiation | 147, 128, 143 | ⊢ |
| : , : , : |
30 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_rational_non_zero__not_zero |
31 | instantiation | 147, 41, 42 | ⊢ |
| : , : , : |
32 | instantiation | 43, 67, 93, 44, 45* | ⊢ |
| : , : |
33 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.e_is_real_pos |
34 | theorem | | ⊢ |
| proveit.numbers.division.div_complex_closure |
35 | instantiation | 69, 46, 47 | , ⊢ |
| : , : , : |
36 | instantiation | 147, 110, 48 | ⊢ |
| : , : , : |
37 | instantiation | 54, 49 | ⊢ |
| : |
38 | instantiation | 97, 50, 99 | ⊢ |
| : , : |
39 | instantiation | 83, 84, 144, 149, 85, 51, 98, 63, 99 | ⊢ |
| : , : , : , : , : , : |
40 | instantiation | 89 | ⊢ |
| : , : , : |
41 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational_nonzero |
42 | instantiation | 52, 109, 53 | ⊢ |
| : , : |
43 | theorem | | ⊢ |
| proveit.numbers.division.div_as_mult |
44 | instantiation | 54, 127 | ⊢ |
| : |
45 | instantiation | 58, 55, 56 | ⊢ |
| : , : , : |
46 | instantiation | 97, 72, 57 | , ⊢ |
| : , : |
47 | instantiation | 58, 59, 60 | , ⊢ |
| : , : , : |
48 | instantiation | 147, 121, 61 | ⊢ |
| : , : , : |
49 | instantiation | 62, 144, 141 | ⊢ |
| : , : |
50 | instantiation | 97, 98, 63 | ⊢ |
| : , : |
51 | instantiation | 100 | ⊢ |
| : , : |
52 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_rational_pos_closure_bin |
53 | instantiation | 147, 126, 146 | ⊢ |
| : , : , : |
54 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
55 | instantiation | 64, 65 | ⊢ |
| : , : , : |
56 | instantiation | 66, 67, 68 | ⊢ |
| : , : |
57 | instantiation | 69, 70, 71 | , ⊢ |
| : , : , : |
58 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
59 | instantiation | 83, 149, 73, 84, 75, 85, 72, 98, 99, 87 | , ⊢ |
| : , : , : , : , : , : |
60 | instantiation | 83, 84, 144, 73, 85, 74, 75, 93, 88, 98, 99, 87 | , ⊢ |
| : , : , : , : , : , : |
61 | instantiation | 147, 128, 137 | ⊢ |
| : , : , : |
62 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_natpos_closure |
63 | instantiation | 147, 110, 76 | ⊢ |
| : , : , : |
64 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
65 | instantiation | 77, 78, 125, 79* | ⊢ |
| : , : |
66 | theorem | | ⊢ |
| proveit.numbers.multiplication.commutation |
67 | instantiation | 147, 110, 80 | ⊢ |
| : , : , : |
68 | instantiation | 147, 110, 81 | ⊢ |
| : , : , : |
69 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
70 | instantiation | 97, 82, 87 | , ⊢ |
| : , : |
71 | instantiation | 83, 84, 144, 149, 85, 86, 98, 99, 87 | , ⊢ |
| : , : , : , : , : , : |
72 | instantiation | 97, 93, 88 | ⊢ |
| : , : |
73 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
74 | instantiation | 100 | ⊢ |
| : , : |
75 | instantiation | 89 | ⊢ |
| : , : , : |
76 | theorem | | ⊢ |
| proveit.physics.quantum.QPE._phase_is_real |
77 | theorem | | ⊢ |
| proveit.numbers.exponentiation.neg_power_as_div |
78 | instantiation | 147, 90, 91 | ⊢ |
| : , : , : |
79 | instantiation | 92, 93 | ⊢ |
| : |
80 | instantiation | 94, 95, 146 | ⊢ |
| : , : , : |
81 | instantiation | 147, 121, 96 | ⊢ |
| : , : , : |
82 | instantiation | 97, 98, 99 | ⊢ |
| : , : |
83 | theorem | | ⊢ |
| proveit.numbers.multiplication.disassociation |
84 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
85 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
86 | instantiation | 100 | ⊢ |
| : , : |
87 | instantiation | 147, 110, 101 | ⊢ |
| : , : , : |
88 | instantiation | 147, 110, 102 | ⊢ |
| : , : , : |
89 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
90 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
91 | instantiation | 147, 103, 104 | ⊢ |
| : , : , : |
92 | theorem | | ⊢ |
| proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
93 | instantiation | 147, 110, 105 | ⊢ |
| : , : , : |
94 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
95 | instantiation | 106, 107 | ⊢ |
| : , : |
96 | instantiation | 147, 108, 109 | ⊢ |
| : , : , : |
97 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_complex_closure_bin |
98 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.i_is_complex |
99 | instantiation | 147, 110, 111 | ⊢ |
| : , : , : |
100 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
101 | instantiation | 147, 121, 112 | ⊢ |
| : , : , : |
102 | instantiation | 147, 113, 114 | ⊢ |
| : , : , : |
103 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
104 | instantiation | 147, 115, 116 | ⊢ |
| : , : , : |
105 | instantiation | 147, 121, 117 | ⊢ |
| : , : , : |
106 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.relax_proper_subset |
107 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.nat_pos_within_real |
108 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational |
109 | instantiation | 118, 119, 120 | ⊢ |
| : , : |
110 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
111 | instantiation | 147, 121, 122 | ⊢ |
| : , : , : |
112 | instantiation | 147, 128, 123 | ⊢ |
| : , : , : |
113 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_pos_within_real |
114 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.pi_is_real_pos |
115 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
116 | instantiation | 147, 124, 127 | ⊢ |
| : , : , : |
117 | instantiation | 147, 128, 140 | ⊢ |
| : , : , : |
118 | theorem | | ⊢ |
| proveit.numbers.division.div_rational_pos_closure |
119 | instantiation | 147, 126, 125 | ⊢ |
| : , : , : |
120 | instantiation | 147, 126, 127 | ⊢ |
| : , : , : |
121 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
122 | instantiation | 147, 128, 129 | ⊢ |
| : , : , : |
123 | instantiation | 147, 131, 130 | ⊢ |
| : , : , : |
124 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
125 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
126 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nat_pos_within_rational_pos |
127 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
128 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
129 | instantiation | 147, 131, 132 | ⊢ |
| : , : , : |
130 | assumption | | ⊢ |
131 | instantiation | 133, 134, 135 | ⊢ |
| : , : |
132 | assumption | | ⊢ |
133 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.int_interval_within_int |
134 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.zero_is_int |
135 | instantiation | 136, 137, 138 | ⊢ |
| : , : |
136 | theorem | | ⊢ |
| proveit.numbers.addition.add_int_closure_bin |
137 | instantiation | 139, 140, 141 | ⊢ |
| : , : |
138 | instantiation | 142, 143 | ⊢ |
| : |
139 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_int_closure |
140 | instantiation | 147, 148, 144 | ⊢ |
| : , : , : |
141 | instantiation | 147, 145, 146 | ⊢ |
| : , : , : |
142 | theorem | | ⊢ |
| proveit.numbers.negation.int_closure |
143 | instantiation | 147, 148, 149 | ⊢ |
| : , : , : |
144 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
145 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nat_pos_within_nat |
146 | axiom | | ⊢ |
| proveit.physics.quantum.QPE._t_in_natural_pos |
147 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
148 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
149 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |