| step type | requirements | statement |
0 | deduction | 1 | ⊢ |
1 | instantiation | 80, 146, 141, 81, 2, 82, 3, 4, 5 | , ⊢ |
| : , : , : , : , : , : |
2 | instantiation | 97 | ⊢ |
| : , : |
3 | instantiation | 15, 10, 6 | ⊢ |
| : , : |
4 | instantiation | 31, 7, 8, 9 | ⊢ |
| : , : |
5 | instantiation | 15, 10, 11 | , ⊢ |
| : , : |
6 | instantiation | 66, 12, 13 | ⊢ |
| : , : , : |
7 | instantiation | 144, 107, 14 | ⊢ |
| : , : , : |
8 | instantiation | 15, 90, 16 | ⊢ |
| : , : |
9 | instantiation | 17, 18, 19 | ⊢ |
| : , : , : |
10 | instantiation | 144, 107, 20 | ⊢ |
| : , : , : |
11 | instantiation | 21, 22 | , ⊢ |
| : |
12 | instantiation | 94, 69, 23 | ⊢ |
| : , : |
13 | instantiation | 55, 24, 25 | ⊢ |
| : , : , : |
14 | instantiation | 144, 118, 26 | ⊢ |
| : , : , : |
15 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_complex_closure |
16 | instantiation | 31, 64, 90, 41 | ⊢ |
| : , : |
17 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
18 | instantiation | 27, 101, 28 | ⊢ |
| : , : |
19 | instantiation | 61, 29 | ⊢ |
| : , : , : |
20 | instantiation | 144, 110, 30 | ⊢ |
| : , : , : |
21 | theorem | | ⊢ |
| proveit.numbers.negation.complex_closure |
22 | instantiation | 31, 32, 33, 34 | , ⊢ |
| : , : |
23 | instantiation | 66, 35, 36 | ⊢ |
| : , : , : |
24 | instantiation | 80, 146, 70, 81, 37, 82, 69, 95, 60, 96 | ⊢ |
| : , : , : , : , : , : |
25 | instantiation | 80, 81, 141, 70, 82, 71, 37, 90, 85, 95, 60, 96 | ⊢ |
| : , : , : , : , : , : |
26 | instantiation | 144, 125, 140 | ⊢ |
| : , : , : |
27 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_rational_non_zero__not_zero |
28 | instantiation | 144, 38, 39 | ⊢ |
| : , : , : |
29 | instantiation | 40, 64, 90, 41, 42* | ⊢ |
| : , : |
30 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.e_is_real_pos |
31 | theorem | | ⊢ |
| proveit.numbers.division.div_complex_closure |
32 | instantiation | 66, 43, 44 | , ⊢ |
| : , : , : |
33 | instantiation | 144, 107, 45 | ⊢ |
| : , : , : |
34 | instantiation | 51, 46 | ⊢ |
| : |
35 | instantiation | 94, 47, 96 | ⊢ |
| : , : |
36 | instantiation | 80, 81, 141, 146, 82, 48, 95, 60, 96 | ⊢ |
| : , : , : , : , : , : |
37 | instantiation | 86 | ⊢ |
| : , : , : |
38 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational_nonzero |
39 | instantiation | 49, 106, 50 | ⊢ |
| : , : |
40 | theorem | | ⊢ |
| proveit.numbers.division.div_as_mult |
41 | instantiation | 51, 124 | ⊢ |
| : |
42 | instantiation | 55, 52, 53 | ⊢ |
| : , : , : |
43 | instantiation | 94, 69, 54 | , ⊢ |
| : , : |
44 | instantiation | 55, 56, 57 | , ⊢ |
| : , : , : |
45 | instantiation | 144, 118, 58 | ⊢ |
| : , : , : |
46 | instantiation | 59, 141, 138 | ⊢ |
| : , : |
47 | instantiation | 94, 95, 60 | ⊢ |
| : , : |
48 | instantiation | 97 | ⊢ |
| : , : |
49 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_rational_pos_closure_bin |
50 | instantiation | 144, 123, 143 | ⊢ |
| : , : , : |
51 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
52 | instantiation | 61, 62 | ⊢ |
| : , : , : |
53 | instantiation | 63, 64, 65 | ⊢ |
| : , : |
54 | instantiation | 66, 67, 68 | , ⊢ |
| : , : , : |
55 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
56 | instantiation | 80, 146, 70, 81, 72, 82, 69, 95, 96, 84 | , ⊢ |
| : , : , : , : , : , : |
57 | instantiation | 80, 81, 141, 70, 82, 71, 72, 90, 85, 95, 96, 84 | , ⊢ |
| : , : , : , : , : , : |
58 | instantiation | 144, 125, 134 | ⊢ |
| : , : , : |
59 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_natpos_closure |
60 | instantiation | 144, 107, 73 | ⊢ |
| : , : , : |
61 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
62 | instantiation | 74, 75, 122, 76* | ⊢ |
| : , : |
63 | theorem | | ⊢ |
| proveit.numbers.multiplication.commutation |
64 | instantiation | 144, 107, 77 | ⊢ |
| : , : , : |
65 | instantiation | 144, 107, 78 | ⊢ |
| : , : , : |
66 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
67 | instantiation | 94, 79, 84 | , ⊢ |
| : , : |
68 | instantiation | 80, 81, 141, 146, 82, 83, 95, 96, 84 | , ⊢ |
| : , : , : , : , : , : |
69 | instantiation | 94, 90, 85 | ⊢ |
| : , : |
70 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
71 | instantiation | 97 | ⊢ |
| : , : |
72 | instantiation | 86 | ⊢ |
| : , : , : |
73 | theorem | | ⊢ |
| proveit.physics.quantum.QPE._phase_is_real |
74 | theorem | | ⊢ |
| proveit.numbers.exponentiation.neg_power_as_div |
75 | instantiation | 144, 87, 88 | ⊢ |
| : , : , : |
76 | instantiation | 89, 90 | ⊢ |
| : |
77 | instantiation | 91, 92, 143 | ⊢ |
| : , : , : |
78 | instantiation | 144, 118, 93 | ⊢ |
| : , : , : |
79 | instantiation | 94, 95, 96 | ⊢ |
| : , : |
80 | theorem | | ⊢ |
| proveit.numbers.multiplication.disassociation |
81 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
82 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
83 | instantiation | 97 | ⊢ |
| : , : |
84 | instantiation | 144, 107, 98 | ⊢ |
| : , : , : |
85 | instantiation | 144, 107, 99 | ⊢ |
| : , : , : |
86 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
87 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
88 | instantiation | 144, 100, 101 | ⊢ |
| : , : , : |
89 | theorem | | ⊢ |
| proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
90 | instantiation | 144, 107, 102 | ⊢ |
| : , : , : |
91 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
92 | instantiation | 103, 104 | ⊢ |
| : , : |
93 | instantiation | 144, 105, 106 | ⊢ |
| : , : , : |
94 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_complex_closure_bin |
95 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.i_is_complex |
96 | instantiation | 144, 107, 108 | ⊢ |
| : , : , : |
97 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
98 | instantiation | 144, 118, 109 | ⊢ |
| : , : , : |
99 | instantiation | 144, 110, 111 | ⊢ |
| : , : , : |
100 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
101 | instantiation | 144, 112, 113 | ⊢ |
| : , : , : |
102 | instantiation | 144, 118, 114 | ⊢ |
| : , : , : |
103 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.relax_proper_subset |
104 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.nat_pos_within_real |
105 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational |
106 | instantiation | 115, 116, 117 | ⊢ |
| : , : |
107 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
108 | instantiation | 144, 118, 119 | ⊢ |
| : , : , : |
109 | instantiation | 144, 125, 120 | ⊢ |
| : , : , : |
110 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_pos_within_real |
111 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.pi_is_real_pos |
112 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
113 | instantiation | 144, 121, 124 | ⊢ |
| : , : , : |
114 | instantiation | 144, 125, 137 | ⊢ |
| : , : , : |
115 | theorem | | ⊢ |
| proveit.numbers.division.div_rational_pos_closure |
116 | instantiation | 144, 123, 122 | ⊢ |
| : , : , : |
117 | instantiation | 144, 123, 124 | ⊢ |
| : , : , : |
118 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
119 | instantiation | 144, 125, 126 | ⊢ |
| : , : , : |
120 | instantiation | 144, 128, 127 | ⊢ |
| : , : , : |
121 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
122 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
123 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nat_pos_within_rational_pos |
124 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
125 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
126 | instantiation | 144, 128, 129 | ⊢ |
| : , : , : |
127 | assumption | | ⊢ |
128 | instantiation | 130, 131, 132 | ⊢ |
| : , : |
129 | assumption | | ⊢ |
130 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.int_interval_within_int |
131 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.zero_is_int |
132 | instantiation | 133, 134, 135 | ⊢ |
| : , : |
133 | theorem | | ⊢ |
| proveit.numbers.addition.add_int_closure_bin |
134 | instantiation | 136, 137, 138 | ⊢ |
| : , : |
135 | instantiation | 139, 140 | ⊢ |
| : |
136 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_int_closure |
137 | instantiation | 144, 145, 141 | ⊢ |
| : , : , : |
138 | instantiation | 144, 142, 143 | ⊢ |
| : , : , : |
139 | theorem | | ⊢ |
| proveit.numbers.negation.int_closure |
140 | instantiation | 144, 145, 146 | ⊢ |
| : , : , : |
141 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
142 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nat_pos_within_nat |
143 | axiom | | ⊢ |
| proveit.physics.quantum.QPE._t_in_natural_pos |
144 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
145 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
146 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |