logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3  ⊢  
  : , : , :
1reference24  ⊢  
2theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
3instantiation24, 4, 5  ⊢  
  : , : , :
4theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
5instantiation24, 6, 7  ⊢  
  : , : , :
6theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
7instantiation24, 8, 9  ⊢  
  : , : , :
8instantiation10, 11, 12  ⊢  
  : , :
9assumption  ⊢  
10theorem  ⊢  
 proveit.numbers.number_sets.integers.int_interval_within_int
11theorem  ⊢  
 proveit.numbers.number_sets.integers.zero_is_int
12instantiation13, 14, 15  ⊢  
  : , :
13theorem  ⊢  
 proveit.numbers.addition.add_int_closure_bin
14instantiation16, 17, 18  ⊢  
  : , :
15instantiation19, 20  ⊢  
  :
16theorem  ⊢  
 proveit.numbers.exponentiation.exp_int_closure
17instantiation24, 25, 21  ⊢  
  : , : , :
18instantiation24, 22, 23  ⊢  
  : , : , :
19theorem  ⊢  
 proveit.numbers.negation.int_closure
20instantiation24, 25, 26  ⊢  
  : , : , :
21theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
22theorem  ⊢  
 proveit.numbers.number_sets.natural_numbers.nat_pos_within_nat
23axiom  ⊢  
 proveit.physics.quantum.QPE._t_in_natural_pos
24theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
25theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
26theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1