| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | ⊢ |
| : , : |
1 | modus ponens | 4, 5 | ⊢ |
2 | reference | 98 | ⊢ |
3 | instantiation | 44, 6, 7, 8 | ⊢ |
| : , : |
4 | instantiation | 9, 150, 117, 97 | ⊢ |
| : , : , : , : , : , : |
5 | generalization | 10 | ⊢ |
6 | instantiation | 148, 120, 11 | ⊢ |
| : , : , : |
7 | instantiation | 23, 101, 12 | ⊢ |
| : , : |
8 | instantiation | 13, 14, 15 | ⊢ |
| : , : , : |
9 | theorem | | ⊢ |
| proveit.numbers.multiplication.distribute_through_summation |
10 | instantiation | 109, 16, 17 | , ⊢ |
| : , : |
11 | instantiation | 148, 126, 18 | ⊢ |
| : , : , : |
12 | instantiation | 44, 51, 101, 29 | ⊢ |
| : , : |
13 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
14 | instantiation | 19, 89, 20 | ⊢ |
| : , : |
15 | instantiation | 48, 21 | ⊢ |
| : , : , : |
16 | instantiation | 23, 24, 22 | ⊢ |
| : , : |
17 | instantiation | 23, 24, 25 | , ⊢ |
| : , : |
18 | instantiation | 148, 129, 144 | ⊢ |
| : , : , : |
19 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_rational_non_zero__not_zero |
20 | instantiation | 148, 26, 27 | ⊢ |
| : , : , : |
21 | instantiation | 28, 51, 101, 29, 30* | ⊢ |
| : , : |
22 | instantiation | 81, 31, 32 | ⊢ |
| : , : , : |
23 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_complex_closure |
24 | instantiation | 148, 120, 33 | ⊢ |
| : , : , : |
25 | instantiation | 34, 35 | , ⊢ |
| : |
26 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational_nonzero |
27 | instantiation | 36, 93, 37 | ⊢ |
| : , : |
28 | theorem | | ⊢ |
| proveit.numbers.division.div_as_mult |
29 | instantiation | 59, 119 | ⊢ |
| : |
30 | instantiation | 69, 38, 39 | ⊢ |
| : , : , : |
31 | instantiation | 109, 84, 40 | ⊢ |
| : , : |
32 | instantiation | 69, 41, 42 | ⊢ |
| : , : , : |
33 | instantiation | 148, 124, 43 | ⊢ |
| : , : , : |
34 | theorem | | ⊢ |
| proveit.numbers.negation.complex_closure |
35 | instantiation | 44, 45, 46, 47 | , ⊢ |
| : , : |
36 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_rational_pos_closure_bin |
37 | instantiation | 148, 118, 147 | ⊢ |
| : , : , : |
38 | instantiation | 48, 49 | ⊢ |
| : , : , : |
39 | instantiation | 50, 51, 52 | ⊢ |
| : , : |
40 | instantiation | 81, 53, 54 | ⊢ |
| : , : , : |
41 | instantiation | 96, 150, 85, 97, 55, 98, 84, 110, 80, 111 | ⊢ |
| : , : , : , : , : , : |
42 | instantiation | 96, 97, 145, 85, 98, 86, 55, 101, 102, 110, 80, 111 | ⊢ |
| : , : , : , : , : , : |
43 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.e_is_real_pos |
44 | theorem | | ⊢ |
| proveit.numbers.division.div_complex_closure |
45 | instantiation | 81, 56, 57 | , ⊢ |
| : , : , : |
46 | instantiation | 148, 120, 58 | ⊢ |
| : , : , : |
47 | instantiation | 59, 60 | ⊢ |
| : |
48 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
49 | instantiation | 61, 62, 117, 63* | ⊢ |
| : , : |
50 | theorem | | ⊢ |
| proveit.numbers.multiplication.commutation |
51 | instantiation | 148, 120, 64 | ⊢ |
| : , : , : |
52 | instantiation | 148, 120, 65 | ⊢ |
| : , : , : |
53 | instantiation | 109, 66, 111 | ⊢ |
| : , : |
54 | instantiation | 96, 97, 145, 150, 98, 67, 110, 80, 111 | ⊢ |
| : , : , : , : , : , : |
55 | instantiation | 103 | ⊢ |
| : , : , : |
56 | instantiation | 109, 84, 68 | , ⊢ |
| : , : |
57 | instantiation | 69, 70, 71 | , ⊢ |
| : , : , : |
58 | instantiation | 148, 126, 72 | ⊢ |
| : , : , : |
59 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
60 | instantiation | 73, 145, 142 | ⊢ |
| : , : |
61 | theorem | | ⊢ |
| proveit.numbers.exponentiation.neg_power_as_div |
62 | instantiation | 148, 74, 75 | ⊢ |
| : , : , : |
63 | instantiation | 76, 101 | ⊢ |
| : |
64 | instantiation | 77, 78, 147 | ⊢ |
| : , : , : |
65 | instantiation | 148, 126, 79 | ⊢ |
| : , : , : |
66 | instantiation | 109, 110, 80 | ⊢ |
| : , : |
67 | instantiation | 112 | ⊢ |
| : , : |
68 | instantiation | 81, 82, 83 | , ⊢ |
| : , : , : |
69 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
70 | instantiation | 96, 150, 85, 97, 87, 98, 84, 110, 111, 100 | , ⊢ |
| : , : , : , : , : , : |
71 | instantiation | 96, 97, 145, 85, 98, 86, 87, 101, 102, 110, 111, 100 | , ⊢ |
| : , : , : , : , : , : |
72 | instantiation | 148, 129, 138 | ⊢ |
| : , : , : |
73 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_natpos_closure |
74 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
75 | instantiation | 148, 88, 89 | ⊢ |
| : , : , : |
76 | theorem | | ⊢ |
| proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
77 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
78 | instantiation | 90, 91 | ⊢ |
| : , : |
79 | instantiation | 148, 92, 93 | ⊢ |
| : , : , : |
80 | instantiation | 148, 120, 94 | ⊢ |
| : , : , : |
81 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
82 | instantiation | 109, 95, 100 | , ⊢ |
| : , : |
83 | instantiation | 96, 97, 145, 150, 98, 99, 110, 111, 100 | , ⊢ |
| : , : , : , : , : , : |
84 | instantiation | 109, 101, 102 | ⊢ |
| : , : |
85 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
86 | instantiation | 112 | ⊢ |
| : , : |
87 | instantiation | 103 | ⊢ |
| : , : , : |
88 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
89 | instantiation | 148, 104, 105 | ⊢ |
| : , : , : |
90 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.relax_proper_subset |
91 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.nat_pos_within_real |
92 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational |
93 | instantiation | 106, 107, 108 | ⊢ |
| : , : |
94 | theorem | | ⊢ |
| proveit.physics.quantum.QPE._phase_is_real |
95 | instantiation | 109, 110, 111 | ⊢ |
| : , : |
96 | theorem | | ⊢ |
| proveit.numbers.multiplication.disassociation |
97 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
98 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
99 | instantiation | 112 | ⊢ |
| : , : |
100 | instantiation | 148, 120, 113 | ⊢ |
| : , : , : |
101 | instantiation | 148, 120, 114 | ⊢ |
| : , : , : |
102 | instantiation | 148, 120, 115 | ⊢ |
| : , : , : |
103 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
104 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
105 | instantiation | 148, 116, 119 | ⊢ |
| : , : , : |
106 | theorem | | ⊢ |
| proveit.numbers.division.div_rational_pos_closure |
107 | instantiation | 148, 118, 117 | ⊢ |
| : , : , : |
108 | instantiation | 148, 118, 119 | ⊢ |
| : , : , : |
109 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_complex_closure_bin |
110 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.i_is_complex |
111 | instantiation | 148, 120, 121 | ⊢ |
| : , : , : |
112 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
113 | instantiation | 148, 126, 122 | ⊢ |
| : , : , : |
114 | instantiation | 148, 126, 123 | ⊢ |
| : , : , : |
115 | instantiation | 148, 124, 125 | ⊢ |
| : , : , : |
116 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
117 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
118 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nat_pos_within_rational_pos |
119 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
120 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
121 | instantiation | 148, 126, 127 | ⊢ |
| : , : , : |
122 | instantiation | 148, 129, 128 | ⊢ |
| : , : , : |
123 | instantiation | 148, 129, 141 | ⊢ |
| : , : , : |
124 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_pos_within_real |
125 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.pi_is_real_pos |
126 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
127 | instantiation | 148, 129, 130 | ⊢ |
| : , : , : |
128 | instantiation | 148, 132, 131 | ⊢ |
| : , : , : |
129 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
130 | instantiation | 148, 132, 133 | ⊢ |
| : , : , : |
131 | assumption | | ⊢ |
132 | instantiation | 134, 135, 136 | ⊢ |
| : , : |
133 | assumption | | ⊢ |
134 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.int_interval_within_int |
135 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.zero_is_int |
136 | instantiation | 137, 138, 139 | ⊢ |
| : , : |
137 | theorem | | ⊢ |
| proveit.numbers.addition.add_int_closure_bin |
138 | instantiation | 140, 141, 142 | ⊢ |
| : , : |
139 | instantiation | 143, 144 | ⊢ |
| : |
140 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_int_closure |
141 | instantiation | 148, 149, 145 | ⊢ |
| : , : , : |
142 | instantiation | 148, 146, 147 | ⊢ |
| : , : , : |
143 | theorem | | ⊢ |
| proveit.numbers.negation.int_closure |
144 | instantiation | 148, 149, 150 | ⊢ |
| : , : , : |
145 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
146 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nat_pos_within_nat |
147 | axiom | | ⊢ |
| proveit.physics.quantum.QPE._t_in_natural_pos |
148 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
149 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
150 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |