import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprRange, IndexedVar, Variable, a, c, k, m
from proveit.logic import Equals, Forall
from proveit.numbers import Complex, Exp, Mult, Neg, Sum, e, frac, i, one, pi, two, zero
from proveit.physics.quantum.QPE import _m_domain, _phase, _two_pow_t
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
sub_expr2 = [k]
sub_expr3 = IndexedVar(a, one)
sub_expr4 = ExprRange(sub_expr1, IndexedVar(c, sub_expr1), one, zero)
sub_expr5 = Mult(Exp(e, Mult(two, pi, i, _phase, k)), Exp(e, Neg(frac(Mult(two, pi, i, k, m), _two_pow_t))))
expr = Forall(instance_param_or_params = [sub_expr3, sub_expr4], instance_expr = Equals(Mult(sub_expr3, Sum(index_or_indices = sub_expr2, summand = sub_expr5, domain = _m_domain), sub_expr4), Sum(index_or_indices = sub_expr2, summand = Mult(sub_expr3, sub_expr5, sub_expr4), domain = _m_domain)).with_wrapping_at(2), domain = Complex).with_wrapping()
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
stored_expr.style_options()
# display the expression information
stored_expr.expr_info()