| step type | requirements | statement |
0 | modus ponens | 1, 2 | ⊢ |
1 | instantiation | 3, 129 | ⊢ |
| : , : , : , : , : , : , : |
2 | generalization | 4 | ⊢ |
3 | theorem | | ⊢ |
| proveit.core_expr_types.lambda_maps.general_lambda_substitution |
4 | instantiation | 62, 5, 6 | , ⊢ |
| : , : , : |
5 | instantiation | 7, 88, 153, 89, 11, 10, 12 | , ⊢ |
| : , : , : , : , : , : , : |
6 | instantiation | 8, 153, 148, 88, 9, 89, 10, 11, 12 | , ⊢ |
| : , : , : , : , : , : |
7 | theorem | | ⊢ |
| proveit.numbers.multiplication.leftward_commutation |
8 | theorem | | ⊢ |
| proveit.numbers.multiplication.association |
9 | instantiation | 104 | ⊢ |
| : , : |
10 | instantiation | 38, 13, 14, 15 | ⊢ |
| : , : |
11 | instantiation | 20, 17, 16 | ⊢ |
| : , : |
12 | instantiation | 20, 17, 18 | , ⊢ |
| : , : |
13 | instantiation | 151, 114, 19 | ⊢ |
| : , : , : |
14 | instantiation | 20, 97, 21 | ⊢ |
| : , : |
15 | instantiation | 22, 23, 24 | ⊢ |
| : , : , : |
16 | instantiation | 73, 25, 26 | ⊢ |
| : , : , : |
17 | instantiation | 151, 114, 27 | ⊢ |
| : , : , : |
18 | instantiation | 28, 29 | , ⊢ |
| : |
19 | instantiation | 151, 125, 30 | ⊢ |
| : , : , : |
20 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_complex_closure |
21 | instantiation | 38, 70, 97, 45 | ⊢ |
| : , : |
22 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
23 | instantiation | 31, 108, 32 | ⊢ |
| : , : |
24 | instantiation | 67, 33 | ⊢ |
| : , : , : |
25 | instantiation | 101, 76, 34 | ⊢ |
| : , : |
26 | instantiation | 62, 35, 36 | ⊢ |
| : , : , : |
27 | instantiation | 151, 117, 37 | ⊢ |
| : , : , : |
28 | theorem | | ⊢ |
| proveit.numbers.negation.complex_closure |
29 | instantiation | 38, 39, 40, 41 | , ⊢ |
| : , : |
30 | instantiation | 151, 132, 147 | ⊢ |
| : , : , : |
31 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_rational_non_zero__not_zero |
32 | instantiation | 151, 42, 43 | ⊢ |
| : , : , : |
33 | instantiation | 44, 70, 97, 45, 46* | ⊢ |
| : , : |
34 | instantiation | 73, 47, 48 | ⊢ |
| : , : , : |
35 | instantiation | 87, 153, 77, 88, 49, 89, 76, 102, 72, 103 | ⊢ |
| : , : , : , : , : , : |
36 | instantiation | 87, 88, 148, 77, 89, 78, 49, 97, 92, 102, 72, 103 | ⊢ |
| : , : , : , : , : , : |
37 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.e_is_real_pos |
38 | theorem | | ⊢ |
| proveit.numbers.division.div_complex_closure |
39 | instantiation | 73, 50, 51 | , ⊢ |
| : , : , : |
40 | instantiation | 151, 114, 52 | ⊢ |
| : , : , : |
41 | instantiation | 56, 53 | ⊢ |
| : |
42 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational_nonzero |
43 | instantiation | 54, 113, 55 | ⊢ |
| : , : |
44 | theorem | | ⊢ |
| proveit.numbers.division.div_as_mult |
45 | instantiation | 56, 131 | ⊢ |
| : |
46 | instantiation | 62, 57, 58 | ⊢ |
| : , : , : |
47 | instantiation | 101, 59, 103 | ⊢ |
| : , : |
48 | instantiation | 87, 88, 148, 153, 89, 60, 102, 72, 103 | ⊢ |
| : , : , : , : , : , : |
49 | instantiation | 93 | ⊢ |
| : , : , : |
50 | instantiation | 101, 76, 61 | , ⊢ |
| : , : |
51 | instantiation | 62, 63, 64 | , ⊢ |
| : , : , : |
52 | instantiation | 151, 125, 65 | ⊢ |
| : , : , : |
53 | instantiation | 66, 148, 145 | ⊢ |
| : , : |
54 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_rational_pos_closure_bin |
55 | instantiation | 151, 130, 150 | ⊢ |
| : , : , : |
56 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
57 | instantiation | 67, 68 | ⊢ |
| : , : , : |
58 | instantiation | 69, 70, 71 | ⊢ |
| : , : |
59 | instantiation | 101, 102, 72 | ⊢ |
| : , : |
60 | instantiation | 104 | ⊢ |
| : , : |
61 | instantiation | 73, 74, 75 | , ⊢ |
| : , : , : |
62 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
63 | instantiation | 87, 153, 77, 88, 79, 89, 76, 102, 103, 91 | , ⊢ |
| : , : , : , : , : , : |
64 | instantiation | 87, 88, 148, 77, 89, 78, 79, 97, 92, 102, 103, 91 | , ⊢ |
| : , : , : , : , : , : |
65 | instantiation | 151, 132, 141 | ⊢ |
| : , : , : |
66 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_natpos_closure |
67 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
68 | instantiation | 80, 81, 129, 82* | ⊢ |
| : , : |
69 | theorem | | ⊢ |
| proveit.numbers.multiplication.commutation |
70 | instantiation | 151, 114, 83 | ⊢ |
| : , : , : |
71 | instantiation | 151, 114, 84 | ⊢ |
| : , : , : |
72 | instantiation | 151, 114, 85 | ⊢ |
| : , : , : |
73 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
74 | instantiation | 101, 86, 91 | , ⊢ |
| : , : |
75 | instantiation | 87, 88, 148, 153, 89, 90, 102, 103, 91 | , ⊢ |
| : , : , : , : , : , : |
76 | instantiation | 101, 97, 92 | ⊢ |
| : , : |
77 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
78 | instantiation | 104 | ⊢ |
| : , : |
79 | instantiation | 93 | ⊢ |
| : , : , : |
80 | theorem | | ⊢ |
| proveit.numbers.exponentiation.neg_power_as_div |
81 | instantiation | 151, 94, 95 | ⊢ |
| : , : , : |
82 | instantiation | 96, 97 | ⊢ |
| : |
83 | instantiation | 98, 99, 150 | ⊢ |
| : , : , : |
84 | instantiation | 151, 125, 100 | ⊢ |
| : , : , : |
85 | theorem | | ⊢ |
| proveit.physics.quantum.QPE._phase_is_real |
86 | instantiation | 101, 102, 103 | ⊢ |
| : , : |
87 | theorem | | ⊢ |
| proveit.numbers.multiplication.disassociation |
88 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
89 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
90 | instantiation | 104 | ⊢ |
| : , : |
91 | instantiation | 151, 114, 105 | ⊢ |
| : , : , : |
92 | instantiation | 151, 114, 106 | ⊢ |
| : , : , : |
93 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
94 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
95 | instantiation | 151, 107, 108 | ⊢ |
| : , : , : |
96 | theorem | | ⊢ |
| proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
97 | instantiation | 151, 114, 109 | ⊢ |
| : , : , : |
98 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
99 | instantiation | 110, 111 | ⊢ |
| : , : |
100 | instantiation | 151, 112, 113 | ⊢ |
| : , : , : |
101 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_complex_closure_bin |
102 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.i_is_complex |
103 | instantiation | 151, 114, 115 | ⊢ |
| : , : , : |
104 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
105 | instantiation | 151, 125, 116 | ⊢ |
| : , : , : |
106 | instantiation | 151, 117, 118 | ⊢ |
| : , : , : |
107 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
108 | instantiation | 151, 119, 120 | ⊢ |
| : , : , : |
109 | instantiation | 151, 125, 121 | ⊢ |
| : , : , : |
110 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.relax_proper_subset |
111 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.nat_pos_within_real |
112 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational |
113 | instantiation | 122, 123, 124 | ⊢ |
| : , : |
114 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
115 | instantiation | 151, 125, 126 | ⊢ |
| : , : , : |
116 | instantiation | 151, 132, 127 | ⊢ |
| : , : , : |
117 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_pos_within_real |
118 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.pi_is_real_pos |
119 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
120 | instantiation | 151, 128, 131 | ⊢ |
| : , : , : |
121 | instantiation | 151, 132, 144 | ⊢ |
| : , : , : |
122 | theorem | | ⊢ |
| proveit.numbers.division.div_rational_pos_closure |
123 | instantiation | 151, 130, 129 | ⊢ |
| : , : , : |
124 | instantiation | 151, 130, 131 | ⊢ |
| : , : , : |
125 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
126 | instantiation | 151, 132, 133 | ⊢ |
| : , : , : |
127 | instantiation | 151, 135, 134 | ⊢ |
| : , : , : |
128 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
129 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
130 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nat_pos_within_rational_pos |
131 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
132 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
133 | instantiation | 151, 135, 136 | ⊢ |
| : , : , : |
134 | assumption | | ⊢ |
135 | instantiation | 137, 138, 139 | ⊢ |
| : , : |
136 | assumption | | ⊢ |
137 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.int_interval_within_int |
138 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.zero_is_int |
139 | instantiation | 140, 141, 142 | ⊢ |
| : , : |
140 | theorem | | ⊢ |
| proveit.numbers.addition.add_int_closure_bin |
141 | instantiation | 143, 144, 145 | ⊢ |
| : , : |
142 | instantiation | 146, 147 | ⊢ |
| : |
143 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_int_closure |
144 | instantiation | 151, 152, 148 | ⊢ |
| : , : , : |
145 | instantiation | 151, 149, 150 | ⊢ |
| : , : , : |
146 | theorem | | ⊢ |
| proveit.numbers.negation.int_closure |
147 | instantiation | 151, 152, 153 | ⊢ |
| : , : , : |
148 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
149 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nat_pos_within_nat |
150 | axiom | | ⊢ |
| proveit.physics.quantum.QPE._t_in_natural_pos |
151 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
152 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
153 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |