logo

Expression of type ExprTuple

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, k, m
from proveit.numbers import Exp, Mult, Neg, e, frac, i, pi, two
from proveit.physics.quantum.QPE import _two_pow_t
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Exp(e, Neg(frac(Mult(two, pi, i, k, m), _two_pow_t))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\mathsf{e}^{-\frac{2 \cdot \pi \cdot \mathsf{i} \cdot k \cdot m}{2^{t}}}\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Operationoperator: 14
operands: 2
2ExprTuple3, 4
3Literal
4Operationoperator: 5
operand: 7
5Literal
6ExprTuple7
7Operationoperator: 8
operands: 9
8Literal
9ExprTuple10, 11
10Operationoperator: 12
operands: 13
11Operationoperator: 14
operands: 15
12Literal
13ExprTuple20, 16, 17, 18, 19
14Literal
15ExprTuple20, 21
16Literal
17Literal
18Variable
19Variable
20Literal
21Literal