| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3, 4, 5* | , , ⊢  |
| | : , : , : , :  |
| 1 | theorem | | ⊢  |
| | proveit.logic.equality.four_chain_transitivity |
| 2 | instantiation | 44, 6 | , ⊢  |
| | : , : , :  |
| 3 | instantiation | 44, 7 | , ⊢  |
| | : , : , :  |
| 4 | instantiation | 26, 8 | , , ⊢  |
| | : , :  |
| 5 | instantiation | 75, 9, 10 | , , ⊢  |
| | : , : , :  |
| 6 | instantiation | 75, 11, 12 | , ⊢  |
| | : , : , :  |
| 7 | instantiation | 75, 13, 14 | , ⊢  |
| | : , : , :  |
| 8 | instantiation | 15, 16, 17, 67, 18, 19 | , , ⊢  |
| | : , : , :  |
| 9 | instantiation | 44, 20 | , ⊢  |
| | : , : , :  |
| 10 | instantiation | 21, 79, 22, 52 | , , ⊢  |
| | : , : , :  |
| 11 | instantiation | 44, 23 | , ⊢  |
| | : , : , :  |
| 12 | instantiation | 26, 24 | , ⊢  |
| | : , :  |
| 13 | instantiation | 44, 25 | , ⊢  |
| | : , : , :  |
| 14 | instantiation | 26, 27 | , ⊢  |
| | : , :  |
| 15 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.real_power_of_product |
| 16 | instantiation | 28, 41, 36 | ⊢  |
| | : , :  |
| 17 | instantiation | 28, 41, 39 | ⊢  |
| | : , :  |
| 18 | instantiation | 29, 30, 31 | ⊢  |
| | : , : , :  |
| 19 | instantiation | 40, 41, 39, 43 | ⊢  |
| | : , :  |
| 20 | instantiation | 32, 79, 36, 39 | , ⊢  |
| | : , : , :  |
| 21 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.complex_power_of_complex_power |
| 22 | instantiation | 33, 36, 39 | , ⊢  |
| | : , :  |
| 23 | instantiation | 75, 34, 35 | , ⊢  |
| | : , : , :  |
| 24 | instantiation | 38, 41, 36, 43 | , ⊢  |
| | : , :  |
| 25 | instantiation | 49, 87, 50, 84, 88, 37, 96, 97, 92, 83, 52 | , ⊢  |
| | : , : , : , : , : , :  |
| 26 | theorem | | ⊢  |
| | proveit.logic.equality.equals_reversal |
| 27 | instantiation | 38, 41, 39, 43 | , ⊢  |
| | : , :  |
| 28 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.exp_complex_closure |
| 29 | theorem | | ⊢  |
| | proveit.logic.equality.sub_left_side_into |
| 30 | instantiation | 40, 41, 42, 43 | ⊢  |
| | : , :  |
| 31 | instantiation | 44, 45 | ⊢  |
| | : , : , :  |
| 32 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.product_of_complex_powers |
| 33 | theorem | | ⊢  |
| | proveit.numbers.addition.add_complex_closure_bin |
| 34 | instantiation | 46, 47, 84, 87, 48, 88, 96, 97, 92, 52, 91 | , ⊢  |
| | : , : , : , : , : , : , :  |
| 35 | instantiation | 49, 87, 50, 84, 88, 51, 96, 97, 92, 91, 52 | , ⊢  |
| | : , : , : , : , : , :  |
| 36 | instantiation | 59, 53, 54 | ⊢  |
| | : , : , :  |
| 37 | instantiation | 66 | ⊢  |
| | : , : , : , :  |
| 38 | instantiation | 55, 93 | ⊢  |
| | :  |
| 39 | instantiation | 59, 56, 57 | ⊢  |
| | : , : , :  |
| 40 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.exp_not_eq_zero |
| 41 | instantiation | 112, 102, 58 | ⊢  |
| | : , : , :  |
| 42 | instantiation | 59, 60, 61 | ⊢  |
| | : , : , :  |
| 43 | instantiation | 62, 63 | ⊢  |
| | :  |
| 44 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 45 | instantiation | 64, 114, 84, 87, 89, 88, 96, 97, 92, 91 | ⊢  |
| | : , : , : , : , : , : , :  |
| 46 | theorem | | ⊢  |
| | proveit.numbers.multiplication.rightward_commutation |
| 47 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |
| 48 | instantiation | 65 | ⊢  |
| | : , : , :  |
| 49 | theorem | | ⊢  |
| | proveit.numbers.multiplication.association |
| 50 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| 51 | instantiation | 66 | ⊢  |
| | : , : , : , :  |
| 52 | instantiation | 112, 102, 67 | ⊢  |
| | : , : , :  |
| 53 | instantiation | 95, 85, 68 | ⊢  |
| | : , :  |
| 54 | instantiation | 75, 69, 70 | ⊢  |
| | : , : , :  |
| 55 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.int_exp_of_exp |
| 56 | instantiation | 95, 85, 71 | ⊢  |
| | : , :  |
| 57 | instantiation | 75, 72, 73 | ⊢  |
| | : , : , :  |
| 58 | instantiation | 112, 107, 79 | ⊢  |
| | : , : , :  |
| 59 | theorem | | ⊢  |
| | proveit.logic.equality.sub_right_side_into |
| 60 | instantiation | 95, 85, 74 | ⊢  |
| | : , :  |
| 61 | instantiation | 75, 76, 77 | ⊢  |
| | : , : , :  |
| 62 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.nonzero_if_in_real_nonzero |
| 63 | instantiation | 112, 78, 79 | ⊢  |
| | : , : , :  |
| 64 | theorem | | ⊢  |
| | proveit.numbers.multiplication.leftward_commutation |
| 65 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
| 66 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
| 67 | instantiation | 112, 105, 80 | ⊢  |
| | : , : , :  |
| 68 | instantiation | 95, 92, 91 | ⊢  |
| | : , :  |
| 69 | instantiation | 86, 84, 114, 87, 81, 88, 85, 92, 91 | ⊢  |
| | : , : , : , : , : , :  |
| 70 | instantiation | 86, 87, 114, 88, 89, 81, 96, 97, 92, 91 | ⊢  |
| | : , : , : , : , : , :  |
| 71 | instantiation | 95, 92, 83 | ⊢  |
| | : , :  |
| 72 | instantiation | 86, 84, 114, 87, 82, 88, 85, 92, 83 | ⊢  |
| | : , : , : , : , : , :  |
| 73 | instantiation | 86, 87, 114, 88, 89, 82, 96, 97, 92, 83 | ⊢  |
| | : , : , : , : , : , :  |
| 74 | instantiation | 95, 91, 92 | ⊢  |
| | : , :  |
| 75 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 76 | instantiation | 86, 84, 114, 87, 90, 88, 85, 91, 92 | ⊢  |
| | : , : , : , : , : , :  |
| 77 | instantiation | 86, 87, 114, 88, 89, 90, 96, 97, 91, 92 | ⊢  |
| | : , : , : , : , : , :  |
| 78 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.real_pos_within_real_nonzero |
| 79 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.e_is_real_pos |
| 80 | instantiation | 112, 110, 93 | ⊢  |
| | : , : , :  |
| 81 | instantiation | 98 | ⊢  |
| | : , :  |
| 82 | instantiation | 98 | ⊢  |
| | : , :  |
| 83 | instantiation | 112, 102, 94 | ⊢  |
| | : , : , :  |
| 84 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 85 | instantiation | 95, 96, 97 | ⊢  |
| | : , :  |
| 86 | theorem | | ⊢  |
| | proveit.numbers.multiplication.disassociation |
| 87 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 88 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 89 | instantiation | 98 | ⊢  |
| | : , :  |
| 90 | instantiation | 98 | ⊢  |
| | : , :  |
| 91 | instantiation | 112, 102, 99 | ⊢  |
| | : , : , :  |
| 92 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.i_is_complex |
| 93 | assumption | | ⊢  |
| 94 | instantiation | 112, 107, 100 | ⊢  |
| | : , : , :  |
| 95 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_complex_closure_bin |
| 96 | instantiation | 112, 102, 101 | ⊢  |
| | : , : , :  |
| 97 | instantiation | 112, 102, 103 | ⊢  |
| | : , : , :  |
| 98 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 99 | instantiation | 112, 105, 104 | ⊢  |
| | : , : , :  |
| 100 | assumption | | ⊢  |
| 101 | instantiation | 112, 105, 106 | ⊢  |
| | : , : , :  |
| 102 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 103 | instantiation | 112, 107, 108 | ⊢  |
| | : , : , :  |
| 104 | instantiation | 112, 110, 109 | ⊢  |
| | : , : , :  |
| 105 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 106 | instantiation | 112, 110, 111 | ⊢  |
| | : , : , :  |
| 107 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.real_pos_within_real |
| 108 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.pi_is_real_pos |
| 109 | assumption | | ⊢  |
| 110 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 111 | instantiation | 112, 113, 114 | ⊢  |
| | : , : , :  |
| 112 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 113 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 114 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| *equality replacement requirements |