| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4, 5* | , , ⊢  |
| : , : , : , :  |
1 | theorem | | ⊢  |
| proveit.logic.equality.four_chain_transitivity |
2 | instantiation | 44, 6 | , ⊢  |
| : , : , :  |
3 | instantiation | 44, 7 | , ⊢  |
| : , : , :  |
4 | instantiation | 26, 8 | , , ⊢  |
| : , :  |
5 | instantiation | 75, 9, 10 | , , ⊢  |
| : , : , :  |
6 | instantiation | 75, 11, 12 | , ⊢  |
| : , : , :  |
7 | instantiation | 75, 13, 14 | , ⊢  |
| : , : , :  |
8 | instantiation | 15, 16, 17, 67, 18, 19 | , , ⊢  |
| : , : , :  |
9 | instantiation | 44, 20 | , ⊢  |
| : , : , :  |
10 | instantiation | 21, 79, 22, 52 | , , ⊢  |
| : , : , :  |
11 | instantiation | 44, 23 | , ⊢  |
| : , : , :  |
12 | instantiation | 26, 24 | , ⊢  |
| : , :  |
13 | instantiation | 44, 25 | , ⊢  |
| : , : , :  |
14 | instantiation | 26, 27 | , ⊢  |
| : , :  |
15 | theorem | | ⊢  |
| proveit.numbers.exponentiation.real_power_of_product |
16 | instantiation | 28, 41, 36 | ⊢  |
| : , :  |
17 | instantiation | 28, 41, 39 | ⊢  |
| : , :  |
18 | instantiation | 29, 30, 31 | ⊢  |
| : , : , :  |
19 | instantiation | 40, 41, 39, 43 | ⊢  |
| : , :  |
20 | instantiation | 32, 79, 36, 39 | , ⊢  |
| : , : , :  |
21 | theorem | | ⊢  |
| proveit.numbers.exponentiation.complex_power_of_complex_power |
22 | instantiation | 33, 36, 39 | , ⊢  |
| : , :  |
23 | instantiation | 75, 34, 35 | , ⊢  |
| : , : , :  |
24 | instantiation | 38, 41, 36, 43 | , ⊢  |
| : , :  |
25 | instantiation | 49, 87, 50, 84, 88, 37, 96, 97, 92, 83, 52 | , ⊢  |
| : , : , : , : , : , :  |
26 | theorem | | ⊢  |
| proveit.logic.equality.equals_reversal |
27 | instantiation | 38, 41, 39, 43 | , ⊢  |
| : , :  |
28 | theorem | | ⊢  |
| proveit.numbers.exponentiation.exp_complex_closure |
29 | theorem | | ⊢  |
| proveit.logic.equality.sub_left_side_into |
30 | instantiation | 40, 41, 42, 43 | ⊢  |
| : , :  |
31 | instantiation | 44, 45 | ⊢  |
| : , : , :  |
32 | theorem | | ⊢  |
| proveit.numbers.exponentiation.product_of_complex_powers |
33 | theorem | | ⊢  |
| proveit.numbers.addition.add_complex_closure_bin |
34 | instantiation | 46, 47, 84, 87, 48, 88, 96, 97, 92, 52, 91 | , ⊢  |
| : , : , : , : , : , : , :  |
35 | instantiation | 49, 87, 50, 84, 88, 51, 96, 97, 92, 91, 52 | , ⊢  |
| : , : , : , : , : , :  |
36 | instantiation | 59, 53, 54 | ⊢  |
| : , : , :  |
37 | instantiation | 66 | ⊢  |
| : , : , : , :  |
38 | instantiation | 55, 93 | ⊢  |
| :  |
39 | instantiation | 59, 56, 57 | ⊢  |
| : , : , :  |
40 | theorem | | ⊢  |
| proveit.numbers.exponentiation.exp_not_eq_zero |
41 | instantiation | 112, 102, 58 | ⊢  |
| : , : , :  |
42 | instantiation | 59, 60, 61 | ⊢  |
| : , : , :  |
43 | instantiation | 62, 63 | ⊢  |
| :  |
44 | axiom | | ⊢  |
| proveit.logic.equality.substitution |
45 | instantiation | 64, 114, 84, 87, 89, 88, 96, 97, 92, 91 | ⊢  |
| : , : , : , : , : , : , :  |
46 | theorem | | ⊢  |
| proveit.numbers.multiplication.rightward_commutation |
47 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat3 |
48 | instantiation | 65 | ⊢  |
| : , : , :  |
49 | theorem | | ⊢  |
| proveit.numbers.multiplication.association |
50 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat4 |
51 | instantiation | 66 | ⊢  |
| : , : , : , :  |
52 | instantiation | 112, 102, 67 | ⊢  |
| : , : , :  |
53 | instantiation | 95, 85, 68 | ⊢  |
| : , :  |
54 | instantiation | 75, 69, 70 | ⊢  |
| : , : , :  |
55 | theorem | | ⊢  |
| proveit.numbers.exponentiation.int_exp_of_exp |
56 | instantiation | 95, 85, 71 | ⊢  |
| : , :  |
57 | instantiation | 75, 72, 73 | ⊢  |
| : , : , :  |
58 | instantiation | 112, 107, 79 | ⊢  |
| : , : , :  |
59 | theorem | | ⊢  |
| proveit.logic.equality.sub_right_side_into |
60 | instantiation | 95, 85, 74 | ⊢  |
| : , :  |
61 | instantiation | 75, 76, 77 | ⊢  |
| : , : , :  |
62 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.nonzero_if_in_real_nonzero |
63 | instantiation | 112, 78, 79 | ⊢  |
| : , : , :  |
64 | theorem | | ⊢  |
| proveit.numbers.multiplication.leftward_commutation |
65 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
66 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
67 | instantiation | 112, 105, 80 | ⊢  |
| : , : , :  |
68 | instantiation | 95, 92, 91 | ⊢  |
| : , :  |
69 | instantiation | 86, 84, 114, 87, 81, 88, 85, 92, 91 | ⊢  |
| : , : , : , : , : , :  |
70 | instantiation | 86, 87, 114, 88, 89, 81, 96, 97, 92, 91 | ⊢  |
| : , : , : , : , : , :  |
71 | instantiation | 95, 92, 83 | ⊢  |
| : , :  |
72 | instantiation | 86, 84, 114, 87, 82, 88, 85, 92, 83 | ⊢  |
| : , : , : , : , : , :  |
73 | instantiation | 86, 87, 114, 88, 89, 82, 96, 97, 92, 83 | ⊢  |
| : , : , : , : , : , :  |
74 | instantiation | 95, 91, 92 | ⊢  |
| : , :  |
75 | axiom | | ⊢  |
| proveit.logic.equality.equals_transitivity |
76 | instantiation | 86, 84, 114, 87, 90, 88, 85, 91, 92 | ⊢  |
| : , : , : , : , : , :  |
77 | instantiation | 86, 87, 114, 88, 89, 90, 96, 97, 91, 92 | ⊢  |
| : , : , : , : , : , :  |
78 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.real_pos_within_real_nonzero |
79 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.e_is_real_pos |
80 | instantiation | 112, 110, 93 | ⊢  |
| : , : , :  |
81 | instantiation | 98 | ⊢  |
| : , :  |
82 | instantiation | 98 | ⊢  |
| : , :  |
83 | instantiation | 112, 102, 94 | ⊢  |
| : , : , :  |
84 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat1 |
85 | instantiation | 95, 96, 97 | ⊢  |
| : , :  |
86 | theorem | | ⊢  |
| proveit.numbers.multiplication.disassociation |
87 | axiom | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
88 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
89 | instantiation | 98 | ⊢  |
| : , :  |
90 | instantiation | 98 | ⊢  |
| : , :  |
91 | instantiation | 112, 102, 99 | ⊢  |
| : , : , :  |
92 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.i_is_complex |
93 | assumption | | ⊢  |
94 | instantiation | 112, 107, 100 | ⊢  |
| : , : , :  |
95 | theorem | | ⊢  |
| proveit.numbers.multiplication.mult_complex_closure_bin |
96 | instantiation | 112, 102, 101 | ⊢  |
| : , : , :  |
97 | instantiation | 112, 102, 103 | ⊢  |
| : , : , :  |
98 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
99 | instantiation | 112, 105, 104 | ⊢  |
| : , : , :  |
100 | assumption | | ⊢  |
101 | instantiation | 112, 105, 106 | ⊢  |
| : , : , :  |
102 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
103 | instantiation | 112, 107, 108 | ⊢  |
| : , : , :  |
104 | instantiation | 112, 110, 109 | ⊢  |
| : , : , :  |
105 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
106 | instantiation | 112, 110, 111 | ⊢  |
| : , : , :  |
107 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.real_pos_within_real |
108 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.pi_is_real_pos |
109 | assumption | | ⊢  |
110 | theorem | | ⊢  |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
111 | instantiation | 112, 113, 114 | ⊢  |
| : , : , :  |
112 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
113 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nat_within_int |
114 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat2 |
*equality replacement requirements |