logo

Expression of type Equals

from the theory of proveit.numbers.multiplication

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import delta, k, theta
from proveit.logic import Equals
from proveit.numbers import Add, Exp, Mult, e, i, pi, two
In [2]:
# build up the expression from sub-expressions
expr = Equals(Mult(Exp(e, Mult(two, pi, i, k, delta)), Exp(e, Mult(two, pi, i, theta, k))), Exp(e, Mult(Add(Mult(two, pi, i, delta), Mult(two, pi, i, theta)), k)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot k \cdot \delta} \cdot \mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot \theta \cdot k}\right) = \mathsf{e}^{\left(\left(2 \cdot \pi \cdot \mathsf{i} \cdot \delta\right) + \left(2 \cdot \pi \cdot \mathsf{i} \cdot \theta\right)\right) \cdot k}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 26
operands: 5
4Operationoperator: 11
operands: 6
5ExprTuple7, 8
6ExprTuple15, 9
7Operationoperator: 11
operands: 10
8Operationoperator: 11
operands: 12
9Operationoperator: 26
operands: 13
10ExprTuple15, 14
11Literal
12ExprTuple15, 16
13ExprTuple17, 22
14Operationoperator: 26
operands: 18
15Literal
16Operationoperator: 26
operands: 19
17Operationoperator: 20
operands: 21
18ExprTuple29, 30, 31, 22, 28
19ExprTuple29, 30, 31, 32, 22
20Literal
21ExprTuple23, 24
22Variable
23Operationoperator: 26
operands: 25
24Operationoperator: 26
operands: 27
25ExprTuple29, 30, 31, 28
26Literal
27ExprTuple29, 30, 31, 32
28Variable
29Literal
30Literal
31Literal
32Variable