| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4, 5, 6, 7* | , , ⊢ |
| : , : , : , : , : |
1 | theorem | | ⊢ |
| proveit.linear_algebra.addition.vec_sum_of_constant_vec |
2 | reference | 87 | ⊢ |
3 | reference | 89 | ⊢ |
4 | instantiation | 8, 55, 9, 10, 11*, 47* | ⊢ |
| : , : , : |
5 | instantiation | 12, 76, 13, 61 | ⊢ |
| : , : , : |
6 | instantiation | 75, 76, 13, 61, 14, 15, 33 | , , ⊢ |
| : , : , : , : |
7 | instantiation | 39, 16, 17 | , , ⊢ |
| : , : , : |
8 | theorem | | ⊢ |
| proveit.numbers.addition.weak_bound_via_left_term_bound |
9 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
10 | instantiation | 18, 98 | ⊢ |
| : |
11 | instantiation | 19, 20, 21 | ⊢ |
| : , : , : |
12 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
13 | instantiation | 91 | ⊢ |
| : , : |
14 | instantiation | 91 | ⊢ |
| : , : |
15 | instantiation | 38, 61, 105, 92 | , ⊢ |
| : , : , : , : |
16 | instantiation | 22, 98, 23, 24, 25, 26 | , , ⊢ |
| : , : , : , : |
17 | instantiation | 50, 51, 52, 35, 36, 27* | , , ⊢ |
| : , : , : , : , : |
18 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_lower_bound |
19 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
20 | instantiation | 28, 45 | ⊢ |
| : |
21 | instantiation | 29, 45, 30 | ⊢ |
| : , : |
22 | axiom | | ⊢ |
| proveit.core_expr_types.operations.operands_substitution |
23 | instantiation | 91 | ⊢ |
| : , : |
24 | instantiation | 91 | ⊢ |
| : , : |
25 | instantiation | 39, 31, 32 | ⊢ |
| : , : , : |
26 | instantiation | 57, 105, 59, 58, 60, 61, 92, 33, 34* | , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
27 | instantiation | 65, 35, 36 | ⊢ |
| : , : |
28 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_right |
29 | theorem | | ⊢ |
| proveit.numbers.addition.commutation |
30 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.zero_is_complex |
31 | instantiation | 48, 37 | ⊢ |
| : , : , : |
32 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_2_1 |
33 | instantiation | 38, 61, 105, 95 | , ⊢ |
| : , : , : , : |
34 | instantiation | 39, 40, 41 | , , ⊢ |
| : , : , : |
35 | instantiation | 104, 107, 42 | ⊢ |
| : , : , : |
36 | instantiation | 43, 97, 45 | ⊢ |
| : , : |
37 | instantiation | 44, 45, 46, 47 | ⊢ |
| : , : , : |
38 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
39 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
40 | instantiation | 48, 49 | , , ⊢ |
| : , : , : |
41 | instantiation | 50, 51, 52, 97, 53* | , , ⊢ |
| : , : , : , : , : |
42 | instantiation | 104, 69, 54 | ⊢ |
| : , : , : |
43 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_complex_closure |
44 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.subtract_from_add |
45 | instantiation | 104, 107, 55 | ⊢ |
| : , : , : |
46 | instantiation | 104, 107, 56 | ⊢ |
| : , : , : |
47 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_2_2 |
48 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
49 | instantiation | 57, 105, 58, 59, 60, 61, 92, 95 | , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
50 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.doubly_scaled_as_singly_scaled |
51 | instantiation | 90, 62 | ⊢ |
| : |
52 | instantiation | 93, 63, 64 | , ⊢ |
| : , : , : |
53 | instantiation | 65, 97, 66* | ⊢ |
| : , : |
54 | instantiation | 104, 88, 67 | ⊢ |
| : , : , : |
55 | instantiation | 104, 69, 68 | ⊢ |
| : , : , : |
56 | instantiation | 104, 69, 70 | ⊢ |
| : , : , : |
57 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.factor_scalar_from_tensor_prod |
58 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
59 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
60 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
61 | instantiation | 71, 102 | ⊢ |
| : |
62 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat9 |
63 | instantiation | 72, 76, 73, 102, 74* | ⊢ |
| : , : , : |
64 | instantiation | 75, 76, 77, 78, 79, 80, 81 | , ⊢ |
| : , : , : , : |
65 | axiom | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_extends_number_mult |
66 | instantiation | 82, 97, 83, 84*, 85* | ⊢ |
| : , : , : |
67 | instantiation | 104, 99, 86 | ⊢ |
| : , : , : |
68 | instantiation | 104, 88, 87 | ⊢ |
| : , : , : |
69 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
70 | instantiation | 104, 88, 89 | ⊢ |
| : , : , : |
71 | theorem | | ⊢ |
| proveit.linear_algebra.real_vec_set_is_vec_space |
72 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_of_cart_exps_within_cart_exp |
73 | instantiation | 91 | ⊢ |
| : , : |
74 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.mult_3_3 |
75 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
76 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
77 | instantiation | 91 | ⊢ |
| : , : |
78 | instantiation | 90, 102 | ⊢ |
| : |
79 | instantiation | 91 | ⊢ |
| : , : |
80 | instantiation | 93, 94, 92 | ⊢ |
| : , : , : |
81 | instantiation | 93, 94, 95 | ⊢ |
| : , : , : |
82 | theorem | | ⊢ |
| proveit.numbers.exponentiation.product_of_posnat_powers |
83 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
84 | instantiation | 96, 97 | ⊢ |
| : |
85 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
86 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
87 | instantiation | 104, 99, 98 | ⊢ |
| : , : , : |
88 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
89 | instantiation | 104, 99, 100 | ⊢ |
| : , : , : |
90 | theorem | | ⊢ |
| proveit.linear_algebra.complex_vec_set_is_vec_space |
91 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
92 | assumption | | ⊢ |
93 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
94 | instantiation | 101, 102, 103 | ⊢ |
| : , : , : |
95 | assumption | | ⊢ |
96 | theorem | | ⊢ |
| proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
97 | instantiation | 104, 107, 105 | ⊢ |
| : , : , : |
98 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
99 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
100 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
101 | theorem | | ⊢ |
| proveit.logic.sets.cartesian_products.cart_exp_subset_eq |
102 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
103 | instantiation | 106, 107 | ⊢ |
| : , : |
104 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
105 | assumption | | ⊢ |
106 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.relax_proper_subset |
107 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
*equality replacement requirements |