logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3, 4, 5, 6, 7*, ,  ⊢  
  : , : , : , : , :
1theorem  ⊢  
 proveit.linear_algebra.addition.vec_sum_of_constant_vec
2reference87  ⊢  
3reference89  ⊢  
4instantiation8, 55, 9, 10, 11*, 47*  ⊢  
  : , : , :
5instantiation12, 76, 13, 61  ⊢  
  : , : , :
6instantiation75, 76, 13, 61, 14, 15, 33, ,  ⊢  
  : , : , : , :
7instantiation39, 16, 17, ,  ⊢  
  : , : , :
8theorem  ⊢  
 proveit.numbers.addition.weak_bound_via_left_term_bound
9theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.zero_is_real
10instantiation18, 98  ⊢  
  :
11instantiation19, 20, 21  ⊢  
  : , : , :
12theorem  ⊢  
 proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space
13instantiation91  ⊢  
  : , :
14instantiation91  ⊢  
  : , :
15instantiation38, 61, 105, 92,  ⊢  
  : , : , : , :
16instantiation22, 98, 23, 24, 25, 26, ,  ⊢  
  : , : , : , :
17instantiation50, 51, 52, 35, 36, 27*, ,  ⊢  
  : , : , : , : , :
18theorem  ⊢  
 proveit.numbers.number_sets.natural_numbers.natural_lower_bound
19theorem  ⊢  
 proveit.logic.equality.sub_right_side_into
20instantiation28, 45  ⊢  
  :
21instantiation29, 45, 30  ⊢  
  : , :
22axiom  ⊢  
 proveit.core_expr_types.operations.operands_substitution
23instantiation91  ⊢  
  : , :
24instantiation91  ⊢  
  : , :
25instantiation39, 31, 32  ⊢  
  : , : , :
26instantiation57, 105, 59, 58, 60, 61, 92, 33, 34*, ,  ⊢  
  : , : , : , : , : , : , : , : , : , :
27instantiation65, 35, 36  ⊢  
  : , :
28theorem  ⊢  
 proveit.numbers.addition.elim_zero_right
29theorem  ⊢  
 proveit.numbers.addition.commutation
30theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.zero_is_complex
31instantiation48, 37  ⊢  
  : , : , :
32theorem  ⊢  
 proveit.numbers.numerals.decimals.add_2_1
33instantiation38, 61, 105, 95,  ⊢  
  : , : , : , :
34instantiation39, 40, 41, ,  ⊢  
  : , : , :
35instantiation104, 107, 42  ⊢  
  : , : , :
36instantiation43, 97, 45  ⊢  
  : , :
37instantiation44, 45, 46, 47  ⊢  
  : , : , :
38theorem  ⊢  
 proveit.linear_algebra.scalar_multiplication.scalar_mult_closure
39axiom  ⊢  
 proveit.logic.equality.equals_transitivity
40instantiation48, 49, ,  ⊢  
  : , : , :
41instantiation50, 51, 52, 97, 53*, ,  ⊢  
  : , : , : , : , :
42instantiation104, 69, 54  ⊢  
  : , : , :
43theorem  ⊢  
 proveit.numbers.exponentiation.exp_complex_closure
44theorem  ⊢  
 proveit.numbers.addition.subtraction.subtract_from_add
45instantiation104, 107, 55  ⊢  
  : , : , :
46instantiation104, 107, 56  ⊢  
  : , : , :
47theorem  ⊢  
 proveit.numbers.numerals.decimals.add_2_2
48axiom  ⊢  
 proveit.logic.equality.substitution
49instantiation57, 105, 58, 59, 60, 61, 92, 95, ,  ⊢  
  : , : , : , : , : , : , : , : , : , :
50theorem  ⊢  
 proveit.linear_algebra.scalar_multiplication.doubly_scaled_as_singly_scaled
51instantiation90, 62  ⊢  
  :
52instantiation93, 63, 64,  ⊢  
  : , : , :
53instantiation65, 97, 66*  ⊢  
  : , :
54instantiation104, 88, 67  ⊢  
  : , : , :
55instantiation104, 69, 68  ⊢  
  : , : , :
56instantiation104, 69, 70  ⊢  
  : , : , :
57theorem  ⊢  
 proveit.linear_algebra.tensors.factor_scalar_from_tensor_prod
58theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
59axiom  ⊢  
 proveit.numbers.number_sets.natural_numbers.zero_in_nats
60theorem  ⊢  
 proveit.core_expr_types.tuples.tuple_len_0_typical_eq
61instantiation71, 102  ⊢  
  :
62theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat9
63instantiation72, 76, 73, 102, 74*  ⊢  
  : , : , :
64instantiation75, 76, 77, 78, 79, 80, 81,  ⊢  
  : , : , : , :
65axiom  ⊢  
 proveit.linear_algebra.scalar_multiplication.scalar_mult_extends_number_mult
66instantiation82, 97, 83, 84*, 85*  ⊢  
  : , : , :
67instantiation104, 99, 86  ⊢  
  : , : , :
68instantiation104, 88, 87  ⊢  
  : , : , :
69theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
70instantiation104, 88, 89  ⊢  
  : , : , :
71theorem  ⊢  
 proveit.linear_algebra.real_vec_set_is_vec_space
72theorem  ⊢  
 proveit.linear_algebra.tensors.tensor_prod_of_cart_exps_within_cart_exp
73instantiation91  ⊢  
  : , :
74theorem  ⊢  
 proveit.numbers.numerals.decimals.mult_3_3
75theorem  ⊢  
 proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space
76theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat2
77instantiation91  ⊢  
  : , :
78instantiation90, 102  ⊢  
  :
79instantiation91  ⊢  
  : , :
80instantiation93, 94, 92  ⊢  
  : , : , :
81instantiation93, 94, 95  ⊢  
  : , : , :
82theorem  ⊢  
 proveit.numbers.exponentiation.product_of_posnat_powers
83theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat1
84instantiation96, 97  ⊢  
  :
85theorem  ⊢  
 proveit.numbers.numerals.decimals.add_1_1
86theorem  ⊢  
 proveit.numbers.numerals.decimals.nat3
87instantiation104, 99, 98  ⊢  
  : , : , :
88theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
89instantiation104, 99, 100  ⊢  
  : , : , :
90theorem  ⊢  
 proveit.linear_algebra.complex_vec_set_is_vec_space
91theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_2_typical_eq
92assumption  ⊢  
93theorem  ⊢  
 proveit.logic.sets.inclusion.unfold_subset_eq
94instantiation101, 102, 103  ⊢  
  : , : , :
95assumption  ⊢  
96theorem  ⊢  
 proveit.numbers.exponentiation.complex_x_to_first_power_is_x
97instantiation104, 107, 105  ⊢  
  : , : , :
98theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
99theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
100theorem  ⊢  
 proveit.numbers.numerals.decimals.nat4
101theorem  ⊢  
 proveit.logic.sets.cartesian_products.cart_exp_subset_eq
102theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat3
103instantiation106, 107  ⊢  
  : , :
104theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
105assumption  ⊢  
106theorem  ⊢  
 proveit.logic.sets.inclusion.relax_proper_subset
107theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
*equality replacement requirements