| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3, 4, 5, 6, 7* | , , ⊢  |
| | : , : , : , : , :  |
| 1 | theorem | | ⊢  |
| | proveit.linear_algebra.addition.vec_sum_of_constant_vec |
| 2 | reference | 87 | ⊢  |
| 3 | reference | 89 | ⊢  |
| 4 | instantiation | 8, 55, 9, 10, 11*, 47* | ⊢  |
| | : , : , :  |
| 5 | instantiation | 12, 76, 13, 61 | ⊢  |
| | : , : , :  |
| 6 | instantiation | 75, 76, 13, 61, 14, 15, 33 | , , ⊢  |
| | : , : , : , :  |
| 7 | instantiation | 39, 16, 17 | , , ⊢  |
| | : , : , :  |
| 8 | theorem | | ⊢  |
| | proveit.numbers.addition.weak_bound_via_left_term_bound |
| 9 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.zero_is_real |
| 10 | instantiation | 18, 98 | ⊢  |
| | :  |
| 11 | instantiation | 19, 20, 21 | ⊢  |
| | : , : , :  |
| 12 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
| 13 | instantiation | 91 | ⊢  |
| | : , :  |
| 14 | instantiation | 91 | ⊢  |
| | : , :  |
| 15 | instantiation | 38, 61, 105, 92 | , ⊢  |
| | : , : , : , :  |
| 16 | instantiation | 22, 98, 23, 24, 25, 26 | , , ⊢  |
| | : , : , : , :  |
| 17 | instantiation | 50, 51, 52, 35, 36, 27* | , , ⊢  |
| | : , : , : , : , :  |
| 18 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.natural_lower_bound |
| 19 | theorem | | ⊢  |
| | proveit.logic.equality.sub_right_side_into |
| 20 | instantiation | 28, 45 | ⊢  |
| | :  |
| 21 | instantiation | 29, 45, 30 | ⊢  |
| | : , :  |
| 22 | axiom | | ⊢  |
| | proveit.core_expr_types.operations.operands_substitution |
| 23 | instantiation | 91 | ⊢  |
| | : , :  |
| 24 | instantiation | 91 | ⊢  |
| | : , :  |
| 25 | instantiation | 39, 31, 32 | ⊢  |
| | : , : , :  |
| 26 | instantiation | 57, 105, 59, 58, 60, 61, 92, 33, 34* | , , ⊢  |
| | : , : , : , : , : , : , : , : , : , :  |
| 27 | instantiation | 65, 35, 36 | ⊢  |
| | : , :  |
| 28 | theorem | | ⊢  |
| | proveit.numbers.addition.elim_zero_right |
| 29 | theorem | | ⊢  |
| | proveit.numbers.addition.commutation |
| 30 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.zero_is_complex |
| 31 | instantiation | 48, 37 | ⊢  |
| | : , : , :  |
| 32 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_2_1 |
| 33 | instantiation | 38, 61, 105, 95 | , ⊢  |
| | : , : , : , :  |
| 34 | instantiation | 39, 40, 41 | , , ⊢  |
| | : , : , :  |
| 35 | instantiation | 104, 107, 42 | ⊢  |
| | : , : , :  |
| 36 | instantiation | 43, 97, 45 | ⊢  |
| | : , :  |
| 37 | instantiation | 44, 45, 46, 47 | ⊢  |
| | : , : , :  |
| 38 | theorem | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
| 39 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 40 | instantiation | 48, 49 | , , ⊢  |
| | : , : , :  |
| 41 | instantiation | 50, 51, 52, 97, 53* | , , ⊢  |
| | : , : , : , : , :  |
| 42 | instantiation | 104, 69, 54 | ⊢  |
| | : , : , :  |
| 43 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.exp_complex_closure |
| 44 | theorem | | ⊢  |
| | proveit.numbers.addition.subtraction.subtract_from_add |
| 45 | instantiation | 104, 107, 55 | ⊢  |
| | : , : , :  |
| 46 | instantiation | 104, 107, 56 | ⊢  |
| | : , : , :  |
| 47 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_2_2 |
| 48 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 49 | instantiation | 57, 105, 58, 59, 60, 61, 92, 95 | , , ⊢  |
| | : , : , : , : , : , : , : , : , : , :  |
| 50 | theorem | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.doubly_scaled_as_singly_scaled |
| 51 | instantiation | 90, 62 | ⊢  |
| | :  |
| 52 | instantiation | 93, 63, 64 | , ⊢  |
| | : , : , :  |
| 53 | instantiation | 65, 97, 66* | ⊢  |
| | : , :  |
| 54 | instantiation | 104, 88, 67 | ⊢  |
| | : , : , :  |
| 55 | instantiation | 104, 69, 68 | ⊢  |
| | : , : , :  |
| 56 | instantiation | 104, 69, 70 | ⊢  |
| | : , : , :  |
| 57 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.factor_scalar_from_tensor_prod |
| 58 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 59 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 60 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 61 | instantiation | 71, 102 | ⊢  |
| | :  |
| 62 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat9 |
| 63 | instantiation | 72, 76, 73, 102, 74* | ⊢  |
| | : , : , :  |
| 64 | instantiation | 75, 76, 77, 78, 79, 80, 81 | , ⊢  |
| | : , : , : , :  |
| 65 | axiom | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.scalar_mult_extends_number_mult |
| 66 | instantiation | 82, 97, 83, 84*, 85* | ⊢  |
| | : , : , :  |
| 67 | instantiation | 104, 99, 86 | ⊢  |
| | : , : , :  |
| 68 | instantiation | 104, 88, 87 | ⊢  |
| | : , : , :  |
| 69 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 70 | instantiation | 104, 88, 89 | ⊢  |
| | : , : , :  |
| 71 | theorem | | ⊢  |
| | proveit.linear_algebra.real_vec_set_is_vec_space |
| 72 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_of_cart_exps_within_cart_exp |
| 73 | instantiation | 91 | ⊢  |
| | : , :  |
| 74 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.mult_3_3 |
| 75 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
| 76 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 77 | instantiation | 91 | ⊢  |
| | : , :  |
| 78 | instantiation | 90, 102 | ⊢  |
| | :  |
| 79 | instantiation | 91 | ⊢  |
| | : , :  |
| 80 | instantiation | 93, 94, 92 | ⊢  |
| | : , : , :  |
| 81 | instantiation | 93, 94, 95 | ⊢  |
| | : , : , :  |
| 82 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.product_of_posnat_powers |
| 83 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat1 |
| 84 | instantiation | 96, 97 | ⊢  |
| | :  |
| 85 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_1_1 |
| 86 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |
| 87 | instantiation | 104, 99, 98 | ⊢  |
| | : , : , :  |
| 88 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 89 | instantiation | 104, 99, 100 | ⊢  |
| | : , : , :  |
| 90 | theorem | | ⊢  |
| | proveit.linear_algebra.complex_vec_set_is_vec_space |
| 91 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 92 | assumption | | ⊢  |
| 93 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.unfold_subset_eq |
| 94 | instantiation | 101, 102, 103 | ⊢  |
| | : , : , :  |
| 95 | assumption | | ⊢  |
| 96 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
| 97 | instantiation | 104, 107, 105 | ⊢  |
| | : , : , :  |
| 98 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 99 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 100 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| 101 | theorem | | ⊢  |
| | proveit.logic.sets.cartesian_products.cart_exp_subset_eq |
| 102 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 103 | instantiation | 106, 107 | ⊢  |
| | : , :  |
| 104 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 105 | assumption | | ⊢  |
| 106 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.relax_proper_subset |
| 107 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| *equality replacement requirements |