| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4, 5, 6 | , , ⊢ |
| : , : , : , : |
1 | axiom | | ⊢ |
| proveit.core_expr_types.operations.operands_substitution |
2 | reference | 67 | ⊢ |
3 | instantiation | 60 | ⊢ |
| : , : |
4 | instantiation | 60 | ⊢ |
| : , : |
5 | instantiation | 13, 7, 8 | ⊢ |
| : , : , : |
6 | instantiation | 28, 74, 30, 29, 31, 32, 61, 9, 10* | , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
7 | instantiation | 20, 11 | ⊢ |
| : , : , : |
8 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_2_1 |
9 | instantiation | 12, 32, 74, 64 | , ⊢ |
| : , : , : , : |
10 | instantiation | 13, 14, 15 | , , ⊢ |
| : , : , : |
11 | instantiation | 16, 17, 18, 19 | ⊢ |
| : , : , : |
12 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
13 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
14 | instantiation | 20, 21 | , , ⊢ |
| : , : , : |
15 | instantiation | 22, 23, 24, 66, 25* | , , ⊢ |
| : , : , : , : , : |
16 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.subtract_from_add |
17 | instantiation | 73, 76, 26 | ⊢ |
| : , : , : |
18 | instantiation | 73, 76, 27 | ⊢ |
| : , : , : |
19 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_2_2 |
20 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
21 | instantiation | 28, 74, 29, 30, 31, 32, 61, 64 | , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
22 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.doubly_scaled_as_singly_scaled |
23 | instantiation | 59, 33 | ⊢ |
| : |
24 | instantiation | 62, 34, 35 | , ⊢ |
| : , : , : |
25 | instantiation | 36, 66, 37* | ⊢ |
| : , : |
26 | instantiation | 73, 39, 38 | ⊢ |
| : , : , : |
27 | instantiation | 73, 39, 40 | ⊢ |
| : , : , : |
28 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.factor_scalar_from_tensor_prod |
29 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
30 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
31 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
32 | instantiation | 41, 71 | ⊢ |
| : |
33 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat9 |
34 | instantiation | 42, 46, 43, 71, 44* | ⊢ |
| : , : , : |
35 | instantiation | 45, 46, 47, 48, 49, 50, 51 | , ⊢ |
| : , : , : , : |
36 | axiom | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_extends_number_mult |
37 | instantiation | 52, 66, 53, 54*, 55* | ⊢ |
| : , : , : |
38 | instantiation | 73, 57, 56 | ⊢ |
| : , : , : |
39 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
40 | instantiation | 73, 57, 58 | ⊢ |
| : , : , : |
41 | theorem | | ⊢ |
| proveit.linear_algebra.real_vec_set_is_vec_space |
42 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_of_cart_exps_within_cart_exp |
43 | instantiation | 60 | ⊢ |
| : , : |
44 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.mult_3_3 |
45 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
46 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
47 | instantiation | 60 | ⊢ |
| : , : |
48 | instantiation | 59, 71 | ⊢ |
| : |
49 | instantiation | 60 | ⊢ |
| : , : |
50 | instantiation | 62, 63, 61 | ⊢ |
| : , : , : |
51 | instantiation | 62, 63, 64 | ⊢ |
| : , : , : |
52 | theorem | | ⊢ |
| proveit.numbers.exponentiation.product_of_posnat_powers |
53 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
54 | instantiation | 65, 66 | ⊢ |
| : |
55 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
56 | instantiation | 73, 68, 67 | ⊢ |
| : , : , : |
57 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
58 | instantiation | 73, 68, 69 | ⊢ |
| : , : , : |
59 | theorem | | ⊢ |
| proveit.linear_algebra.complex_vec_set_is_vec_space |
60 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
61 | assumption | | ⊢ |
62 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
63 | instantiation | 70, 71, 72 | ⊢ |
| : , : , : |
64 | assumption | | ⊢ |
65 | theorem | | ⊢ |
| proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
66 | instantiation | 73, 76, 74 | ⊢ |
| : , : , : |
67 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
68 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
69 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
70 | theorem | | ⊢ |
| proveit.logic.sets.cartesian_products.cart_exp_subset_eq |
71 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
72 | instantiation | 75, 76 | ⊢ |
| : , : |
73 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
74 | assumption | | ⊢ |
75 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.relax_proper_subset |
76 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
*equality replacement requirements |