| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3, 4, 5, 6 | , , ⊢  |
| | : , : , : , :  |
| 1 | axiom | | ⊢  |
| | proveit.core_expr_types.operations.operands_substitution |
| 2 | reference | 67 | ⊢  |
| 3 | instantiation | 60 | ⊢  |
| | : , :  |
| 4 | instantiation | 60 | ⊢  |
| | : , :  |
| 5 | instantiation | 13, 7, 8 | ⊢  |
| | : , : , :  |
| 6 | instantiation | 28, 74, 30, 29, 31, 32, 61, 9, 10* | , , ⊢  |
| | : , : , : , : , : , : , : , : , : , :  |
| 7 | instantiation | 20, 11 | ⊢  |
| | : , : , :  |
| 8 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_2_1 |
| 9 | instantiation | 12, 32, 74, 64 | , ⊢  |
| | : , : , : , :  |
| 10 | instantiation | 13, 14, 15 | , , ⊢  |
| | : , : , :  |
| 11 | instantiation | 16, 17, 18, 19 | ⊢  |
| | : , : , :  |
| 12 | theorem | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
| 13 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 14 | instantiation | 20, 21 | , , ⊢  |
| | : , : , :  |
| 15 | instantiation | 22, 23, 24, 66, 25* | , , ⊢  |
| | : , : , : , : , :  |
| 16 | theorem | | ⊢  |
| | proveit.numbers.addition.subtraction.subtract_from_add |
| 17 | instantiation | 73, 76, 26 | ⊢  |
| | : , : , :  |
| 18 | instantiation | 73, 76, 27 | ⊢  |
| | : , : , :  |
| 19 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_2_2 |
| 20 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 21 | instantiation | 28, 74, 29, 30, 31, 32, 61, 64 | , , ⊢  |
| | : , : , : , : , : , : , : , : , : , :  |
| 22 | theorem | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.doubly_scaled_as_singly_scaled |
| 23 | instantiation | 59, 33 | ⊢  |
| | :  |
| 24 | instantiation | 62, 34, 35 | , ⊢  |
| | : , : , :  |
| 25 | instantiation | 36, 66, 37* | ⊢  |
| | : , :  |
| 26 | instantiation | 73, 39, 38 | ⊢  |
| | : , : , :  |
| 27 | instantiation | 73, 39, 40 | ⊢  |
| | : , : , :  |
| 28 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.factor_scalar_from_tensor_prod |
| 29 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 30 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 31 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 32 | instantiation | 41, 71 | ⊢  |
| | :  |
| 33 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat9 |
| 34 | instantiation | 42, 46, 43, 71, 44* | ⊢  |
| | : , : , :  |
| 35 | instantiation | 45, 46, 47, 48, 49, 50, 51 | , ⊢  |
| | : , : , : , :  |
| 36 | axiom | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.scalar_mult_extends_number_mult |
| 37 | instantiation | 52, 66, 53, 54*, 55* | ⊢  |
| | : , : , :  |
| 38 | instantiation | 73, 57, 56 | ⊢  |
| | : , : , :  |
| 39 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 40 | instantiation | 73, 57, 58 | ⊢  |
| | : , : , :  |
| 41 | theorem | | ⊢  |
| | proveit.linear_algebra.real_vec_set_is_vec_space |
| 42 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_of_cart_exps_within_cart_exp |
| 43 | instantiation | 60 | ⊢  |
| | : , :  |
| 44 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.mult_3_3 |
| 45 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
| 46 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 47 | instantiation | 60 | ⊢  |
| | : , :  |
| 48 | instantiation | 59, 71 | ⊢  |
| | :  |
| 49 | instantiation | 60 | ⊢  |
| | : , :  |
| 50 | instantiation | 62, 63, 61 | ⊢  |
| | : , : , :  |
| 51 | instantiation | 62, 63, 64 | ⊢  |
| | : , : , :  |
| 52 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.product_of_posnat_powers |
| 53 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat1 |
| 54 | instantiation | 65, 66 | ⊢  |
| | :  |
| 55 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_1_1 |
| 56 | instantiation | 73, 68, 67 | ⊢  |
| | : , : , :  |
| 57 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 58 | instantiation | 73, 68, 69 | ⊢  |
| | : , : , :  |
| 59 | theorem | | ⊢  |
| | proveit.linear_algebra.complex_vec_set_is_vec_space |
| 60 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 61 | assumption | | ⊢  |
| 62 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.unfold_subset_eq |
| 63 | instantiation | 70, 71, 72 | ⊢  |
| | : , : , :  |
| 64 | assumption | | ⊢  |
| 65 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
| 66 | instantiation | 73, 76, 74 | ⊢  |
| | : , : , :  |
| 67 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 68 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 69 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| 70 | theorem | | ⊢  |
| | proveit.logic.sets.cartesian_products.cart_exp_subset_eq |
| 71 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 72 | instantiation | 75, 76 | ⊢  |
| | : , :  |
| 73 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 74 | assumption | | ⊢  |
| 75 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.relax_proper_subset |
| 76 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| *equality replacement requirements |