logo

Expression of type Equals

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import beta, x, y
from proveit.linear_algebra import ScalarMult, TensorProd
from proveit.logic import Equals
from proveit.numbers import Add, Exp, four, one, subtract, three, two
In [2]:
# build up the expression from sub-expressions
expr = Equals(ScalarMult(Add(subtract(four, two), one), TensorProd(ScalarMult(beta, x), ScalarMult(beta, y))), ScalarMult(three, ScalarMult(Exp(beta, two), TensorProd(x, y)))).with_wrapping_at(2)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\begin{array}{c} \begin{array}{l} \left(\left(\left(4 - 2\right) + 1\right) \cdot \left(\left(\beta \cdot x\right) {\otimes} \left(\beta \cdot y\right)\right)\right) =  \\ \left(3 \cdot \left(\beta^{2} \cdot \left(x {\otimes} y\right)\right)\right) \end{array} \end{array}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()(2)('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 23
operands: 5
4Operationoperator: 23
operands: 6
5ExprTuple7, 8
6ExprTuple9, 10
7Operationoperator: 20
operands: 11
8Operationoperator: 27
operands: 12
9Literal
10Operationoperator: 23
operands: 13
11ExprTuple14, 15
12ExprTuple16, 17
13ExprTuple18, 19
14Operationoperator: 20
operands: 21
15Literal
16Operationoperator: 23
operands: 22
17Operationoperator: 23
operands: 24
18Operationoperator: 25
operands: 26
19Operationoperator: 27
operands: 28
20Literal
21ExprTuple29, 30
22ExprTuple31, 32
23Literal
24ExprTuple31, 33
25Literal
26ExprTuple31, 36
27Literal
28ExprTuple32, 33
29Literal
30Operationoperator: 34
operand: 36
31Variable
32Variable
33Variable
34Literal
35ExprTuple36
36Literal