| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3 | , , ⊢  |
| | : , : , :  |
| 1 | reference | 18 | ⊢  |
| 2 | instantiation | 4, 77, 5, 6, 7, 8 | , , ⊢  |
| | : , : , : , :  |
| 3 | instantiation | 29, 30, 31, 14, 15, 9* | , , ⊢  |
| | : , : , : , : , :  |
| 4 | axiom | | ⊢  |
| | proveit.core_expr_types.operations.operands_substitution |
| 5 | instantiation | 70 | ⊢  |
| | : , :  |
| 6 | instantiation | 70 | ⊢  |
| | : , :  |
| 7 | instantiation | 18, 10, 11 | ⊢  |
| | : , : , :  |
| 8 | instantiation | 36, 84, 38, 37, 39, 40, 71, 12, 13* | , , ⊢  |
| | : , : , : , : , : , : , : , : , : , :  |
| 9 | instantiation | 44, 14, 15 | ⊢  |
| | : , :  |
| 10 | instantiation | 27, 16 | ⊢  |
| | : , : , :  |
| 11 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_2_1 |
| 12 | instantiation | 17, 40, 84, 74 | , ⊢  |
| | : , : , : , :  |
| 13 | instantiation | 18, 19, 20 | , , ⊢  |
| | : , : , :  |
| 14 | instantiation | 83, 86, 21 | ⊢  |
| | : , : , :  |
| 15 | instantiation | 22, 76, 24 | ⊢  |
| | : , :  |
| 16 | instantiation | 23, 24, 25, 26 | ⊢  |
| | : , : , :  |
| 17 | theorem | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
| 18 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 19 | instantiation | 27, 28 | , , ⊢  |
| | : , : , :  |
| 20 | instantiation | 29, 30, 31, 76, 32* | , , ⊢  |
| | : , : , : , : , :  |
| 21 | instantiation | 83, 48, 33 | ⊢  |
| | : , : , :  |
| 22 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.exp_complex_closure |
| 23 | theorem | | ⊢  |
| | proveit.numbers.addition.subtraction.subtract_from_add |
| 24 | instantiation | 83, 86, 34 | ⊢  |
| | : , : , :  |
| 25 | instantiation | 83, 86, 35 | ⊢  |
| | : , : , :  |
| 26 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_2_2 |
| 27 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 28 | instantiation | 36, 84, 37, 38, 39, 40, 71, 74 | , , ⊢  |
| | : , : , : , : , : , : , : , : , : , :  |
| 29 | theorem | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.doubly_scaled_as_singly_scaled |
| 30 | instantiation | 69, 41 | ⊢  |
| | :  |
| 31 | instantiation | 72, 42, 43 | , ⊢  |
| | : , : , :  |
| 32 | instantiation | 44, 76, 45* | ⊢  |
| | : , :  |
| 33 | instantiation | 83, 67, 46 | ⊢  |
| | : , : , :  |
| 34 | instantiation | 83, 48, 47 | ⊢  |
| | : , : , :  |
| 35 | instantiation | 83, 48, 49 | ⊢  |
| | : , : , :  |
| 36 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.factor_scalar_from_tensor_prod |
| 37 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 38 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 39 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 40 | instantiation | 50, 81 | ⊢  |
| | :  |
| 41 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat9 |
| 42 | instantiation | 51, 55, 52, 81, 53* | ⊢  |
| | : , : , :  |
| 43 | instantiation | 54, 55, 56, 57, 58, 59, 60 | , ⊢  |
| | : , : , : , :  |
| 44 | axiom | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.scalar_mult_extends_number_mult |
| 45 | instantiation | 61, 76, 62, 63*, 64* | ⊢  |
| | : , : , :  |
| 46 | instantiation | 83, 78, 65 | ⊢  |
| | : , : , :  |
| 47 | instantiation | 83, 67, 66 | ⊢  |
| | : , : , :  |
| 48 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 49 | instantiation | 83, 67, 68 | ⊢  |
| | : , : , :  |
| 50 | theorem | | ⊢  |
| | proveit.linear_algebra.real_vec_set_is_vec_space |
| 51 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_of_cart_exps_within_cart_exp |
| 52 | instantiation | 70 | ⊢  |
| | : , :  |
| 53 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.mult_3_3 |
| 54 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
| 55 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 56 | instantiation | 70 | ⊢  |
| | : , :  |
| 57 | instantiation | 69, 81 | ⊢  |
| | :  |
| 58 | instantiation | 70 | ⊢  |
| | : , :  |
| 59 | instantiation | 72, 73, 71 | ⊢  |
| | : , : , :  |
| 60 | instantiation | 72, 73, 74 | ⊢  |
| | : , : , :  |
| 61 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.product_of_posnat_powers |
| 62 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat1 |
| 63 | instantiation | 75, 76 | ⊢  |
| | :  |
| 64 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_1_1 |
| 65 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |
| 66 | instantiation | 83, 78, 77 | ⊢  |
| | : , : , :  |
| 67 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 68 | instantiation | 83, 78, 79 | ⊢  |
| | : , : , :  |
| 69 | theorem | | ⊢  |
| | proveit.linear_algebra.complex_vec_set_is_vec_space |
| 70 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 71 | assumption | | ⊢  |
| 72 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.unfold_subset_eq |
| 73 | instantiation | 80, 81, 82 | ⊢  |
| | : , : , :  |
| 74 | assumption | | ⊢  |
| 75 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
| 76 | instantiation | 83, 86, 84 | ⊢  |
| | : , : , :  |
| 77 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 78 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 79 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| 80 | theorem | | ⊢  |
| | proveit.logic.sets.cartesian_products.cart_exp_subset_eq |
| 81 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 82 | instantiation | 85, 86 | ⊢  |
| | : , :  |
| 83 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 84 | assumption | | ⊢  |
| 85 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.relax_proper_subset |
| 86 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| *equality replacement requirements |