| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | , , ⊢ |
| : , : , : |
1 | reference | 18 | ⊢ |
2 | instantiation | 4, 77, 5, 6, 7, 8 | , , ⊢ |
| : , : , : , : |
3 | instantiation | 29, 30, 31, 14, 15, 9* | , , ⊢ |
| : , : , : , : , : |
4 | axiom | | ⊢ |
| proveit.core_expr_types.operations.operands_substitution |
5 | instantiation | 70 | ⊢ |
| : , : |
6 | instantiation | 70 | ⊢ |
| : , : |
7 | instantiation | 18, 10, 11 | ⊢ |
| : , : , : |
8 | instantiation | 36, 84, 38, 37, 39, 40, 71, 12, 13* | , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
9 | instantiation | 44, 14, 15 | ⊢ |
| : , : |
10 | instantiation | 27, 16 | ⊢ |
| : , : , : |
11 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_2_1 |
12 | instantiation | 17, 40, 84, 74 | , ⊢ |
| : , : , : , : |
13 | instantiation | 18, 19, 20 | , , ⊢ |
| : , : , : |
14 | instantiation | 83, 86, 21 | ⊢ |
| : , : , : |
15 | instantiation | 22, 76, 24 | ⊢ |
| : , : |
16 | instantiation | 23, 24, 25, 26 | ⊢ |
| : , : , : |
17 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
18 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
19 | instantiation | 27, 28 | , , ⊢ |
| : , : , : |
20 | instantiation | 29, 30, 31, 76, 32* | , , ⊢ |
| : , : , : , : , : |
21 | instantiation | 83, 48, 33 | ⊢ |
| : , : , : |
22 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_complex_closure |
23 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.subtract_from_add |
24 | instantiation | 83, 86, 34 | ⊢ |
| : , : , : |
25 | instantiation | 83, 86, 35 | ⊢ |
| : , : , : |
26 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_2_2 |
27 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
28 | instantiation | 36, 84, 37, 38, 39, 40, 71, 74 | , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
29 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.doubly_scaled_as_singly_scaled |
30 | instantiation | 69, 41 | ⊢ |
| : |
31 | instantiation | 72, 42, 43 | , ⊢ |
| : , : , : |
32 | instantiation | 44, 76, 45* | ⊢ |
| : , : |
33 | instantiation | 83, 67, 46 | ⊢ |
| : , : , : |
34 | instantiation | 83, 48, 47 | ⊢ |
| : , : , : |
35 | instantiation | 83, 48, 49 | ⊢ |
| : , : , : |
36 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.factor_scalar_from_tensor_prod |
37 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
38 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
39 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
40 | instantiation | 50, 81 | ⊢ |
| : |
41 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat9 |
42 | instantiation | 51, 55, 52, 81, 53* | ⊢ |
| : , : , : |
43 | instantiation | 54, 55, 56, 57, 58, 59, 60 | , ⊢ |
| : , : , : , : |
44 | axiom | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_extends_number_mult |
45 | instantiation | 61, 76, 62, 63*, 64* | ⊢ |
| : , : , : |
46 | instantiation | 83, 78, 65 | ⊢ |
| : , : , : |
47 | instantiation | 83, 67, 66 | ⊢ |
| : , : , : |
48 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
49 | instantiation | 83, 67, 68 | ⊢ |
| : , : , : |
50 | theorem | | ⊢ |
| proveit.linear_algebra.real_vec_set_is_vec_space |
51 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_of_cart_exps_within_cart_exp |
52 | instantiation | 70 | ⊢ |
| : , : |
53 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.mult_3_3 |
54 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
55 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
56 | instantiation | 70 | ⊢ |
| : , : |
57 | instantiation | 69, 81 | ⊢ |
| : |
58 | instantiation | 70 | ⊢ |
| : , : |
59 | instantiation | 72, 73, 71 | ⊢ |
| : , : , : |
60 | instantiation | 72, 73, 74 | ⊢ |
| : , : , : |
61 | theorem | | ⊢ |
| proveit.numbers.exponentiation.product_of_posnat_powers |
62 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
63 | instantiation | 75, 76 | ⊢ |
| : |
64 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
65 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
66 | instantiation | 83, 78, 77 | ⊢ |
| : , : , : |
67 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
68 | instantiation | 83, 78, 79 | ⊢ |
| : , : , : |
69 | theorem | | ⊢ |
| proveit.linear_algebra.complex_vec_set_is_vec_space |
70 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
71 | assumption | | ⊢ |
72 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
73 | instantiation | 80, 81, 82 | ⊢ |
| : , : , : |
74 | assumption | | ⊢ |
75 | theorem | | ⊢ |
| proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
76 | instantiation | 83, 86, 84 | ⊢ |
| : , : , : |
77 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
78 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
79 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
80 | theorem | | ⊢ |
| proveit.logic.sets.cartesian_products.cart_exp_subset_eq |
81 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
82 | instantiation | 85, 86 | ⊢ |
| : , : |
83 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
84 | assumption | | ⊢ |
85 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.relax_proper_subset |
86 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
*equality replacement requirements |