setup_sobol_g_function
- pyapprox.benchmarks.setup_sobol_g_function(nvars)[source]
Setup the Sobol-G function benchmark
\[f(z) = \prod_{i=1}^d\frac{\lvert 4z_i-2\rvert+a_i}{1+a_i}, \quad a_i=\frac{i-2}{2}\]using
>>> from pyapprox.benchmarks.benchmarks import setup_benchmark >>> benchmark=setup_benchmark('sobol_g',nvars=2) >>> print(benchmark.keys()) dict_keys(['fun', 'mean', 'variance', 'main_effects', 'total_effects', 'variable'])
- Parameters:
- nvarsinteger
The number of variables of the Sobol-G function
- Returns:
- benchmark
Benchmark
Object containing the benchmark attributes
- funcallable
The function being analyzed
- variable
JointVariable
Class containing information about each of the nvars inputs to fun
- mean: np.ndarray (nvars)
The mean of the function with respect to the PDF of var
- variance: np.ndarray (nvars)
The variance of the function with respect to the PDF of var
- main_effectsnp.ndarray (nvars)
The variance based main effect sensitivity indices
- total_effectsnp.ndarray (nvars)
The variance based total effect sensitivity indices
- benchmark
References