setup_ishigami_functionο
- pyapprox.benchmarks.setup_ishigami_function(a, b)[source]ο
Setup the Ishigami function benchmark
\[f(z) = \sin(z_1)+a\sin^2(z_2) + bz_3^4\sin(z_0)\]using
>>> from pyapprox.benchmarks.benchmarks import setup_benchmark >>> benchmark=setup_benchmark('ishigami',a=7,b=0.1) >>> print(benchmark.keys()) dict_keys(['fun', 'jac', 'hess', 'variable', 'mean', 'variance', 'main_effects', 'total_effects', 'sobol_indices'])
- Parameters:
- afloat
The hyper-parameter a
- bfloat
The hyper-parameter b
- Returns:
- benchmark
Benchmark
Object containing the benchmark attributes
- funcallable
The function being analyzed
- variable
JointVariable
Class containing information about each of the nvars inputs to fun
- jaccallable
The jacobian of fun. (optional)
- hesscallable
The Hessian of fun. (optional)
- hesspcallable
Function implementing the hessian of fun multiplied by a vector. (optional)
- mean: np.ndarray (nvars)
The mean of the function with respect to the PDF of var
- variance: np.ndarray (nvars)
The variance of the function with respect to the PDF of var
- main_effectsnp.ndarray (nvars)
The variance based main effect sensitivity indices
- total_effectsnp.ndarray (nvars)
The variance based total effect sensitivity indices
- sobol_indicesnp.ndarray (nsobol_indices)
The variance based Sobol sensitivity indices
- sobol_interaction_indicesnp.ndarray(nsobol_indices)
The indices of the acitive variable dimensions involved in each sobol index
- benchmark
References