setup_oakley_function
- pyapprox.benchmarks.setup_oakley_function()[source]
Setup the Oakely function benchmark
\[f(z) = a_1^Tz + a_2^T\sin(z) + a_3^T\cos(z) + z^TMz\]where \(z\) consists of 15 I.I.D. standard Normal variables and the data \(a_1,a_2,a_3\) and \(~M\) are defined in the function
get_oakley_function_data()
.>>> from pyapprox.benchmarks.benchmarks import setup_benchmark >>> benchmark=setup_benchmark('oakley') >>> print(benchmark.keys()) dict_keys(['fun', 'variable', 'mean', 'variance', 'main_effects'])
- Returns:
- benchmark
Benchmark
Object containing the benchmark attributes
- funcallable
The function being analyzed
- variable
JointVariable
Class containing information about each of the nvars inputs to fun
- mean: np.ndarray (nvars)
The mean of the function with respect to the PDF of var
- variance: np.ndarray (nvars)
The variance of the function with respect to the PDF of var
- main_effectsnp.ndarray (nvars)
The variance based main effect sensitivity indices
- benchmark
References