setup_oakley_function¶
-
pyapprox.benchmarks.benchmarks.
setup_oakley_function
()[source]¶ Setup the Oakely function benchmark
\[f(z) = a_1^Tz + a_2^T\sin(z) + a_3^T\cos(z) + z^TMz\]where \(z\) consists of 15 I.I.D. standard Normal variables and the data \(a_1,a_2,a_3\) and \(M\) are defined in the function
pyapprox.benchmarks.sensitivity_benchmarks.get_oakley_function_data()
.>>> from pyapprox.benchmarks.benchmarks import setup_benchmark >>> benchmark=setup_benchmark('oakley') >>> print(benchmark.keys()) dict_keys(['fun', 'variable', 'mean', 'variance', 'main_effects'])
- Returns
- benchmarkpya.Benchmark
Object containing the benchmark attributes
References