setup_oakley_function¶
-
pyapprox.benchmarks.benchmarks.
setup_oakley_function
()[source]¶ Setup the Oakely function benchmark
f(z)=aT1z+aT2sin(z)+aT3cos(z)+zTMzwhere z consists of 15 I.I.D. standard Normal variables and the data a1,a2,a3 and M are defined in the function
pyapprox.benchmarks.sensitivity_benchmarks.get_oakley_function_data()
.>>> from pyapprox.benchmarks.benchmarks import setup_benchmark >>> benchmark=setup_benchmark('oakley') >>> print(benchmark.keys()) dict_keys(['fun', 'variable', 'mean', 'variance', 'main_effects'])
- Returns
- benchmarkpya.Benchmark
Object containing the benchmark attributes
References