get_oakley_function_data¶
-
pyapprox.benchmarks.sensitivity_benchmarks.
get_oakley_function_data
()[source]¶ Get the data \(a_1,a_2,a_3\) and \(M\) of the Oakley function
\[f(z) = a_1^Tz + a_2^T\sin(z) + a_3^T\cos(z) + z^TMz\]- Returns
- a1np.ndarray (15)
The vector \(a_1\) of the Oakley function
- a2np.ndarray (15)
The vector \(a_2\) of the Oakley function
- a3np.ndarray (15)
The vector \(a_3\) of the Oakley function
- Mnp.ndarray (15,15)
The non-symmetric matrix \(M\) of the Oakley function
Examples
>>> from pyapprox.benchmarks.sensitivity_benchmarks import get_oakley_function_data >>> a1,a2,a3,M=get_oakley_function_data() >>> print(a1) [0.0118 0.0456 0.2297 0.0393 0.1177 0.3865 0.3897 0.6061 0.6159 0.4005 1.0741 1.1474 0.788 1.1242 1.1982] >>> print(a2) [0.4341 0.0887 0.0512 0.3233 0.1489 1.036 0.9892 0.9672 0.8977 0.8083 1.8426 2.4712 2.3946 2.0045 2.2621] >>> print(a3) [0.1044 0.2057 0.0774 0.273 0.1253 0.7526 0.857 1.0331 0.8388 0.797 2.2145 2.0382 2.4004 2.0541 1.9845] >>> print(M) [[-0.02248289 -0.18501666 0.13418263 0.36867264 0.17172785 0.13651143 -0.44034404 -0.08142285 0.71321025 -0.44361072 0.50383394 -0.02410146 -0.04593968 0.21666181 0.05588742] [ 0.2565963 0.05379229 0.25800381 0.23795905 -0.59125756 -0.08162708 -0.28749073 0.41581639 0.49752241 0.08389317 -0.11056683 0.03322235 -0.13979497 -0.03102056 -0.22318721] [-0.05599981 0.19542252 0.09552901 -0.2862653 -0.14441303 0.22369356 0.14527412 0.28998481 0.2310501 -0.31929879 -0.29039128 -0.20956898 0.43139047 0.02442915 0.04490441] [ 0.66448103 0.43069872 0.29924645 -0.16202441 -0.31479544 -0.39026802 0.17679822 0.05795266 0.17230342 0.13466011 -0.3527524 0.25146896 -0.01881053 0.36482392 -0.32504618] [-0.121278 0.12463327 0.10656519 0.0465623 -0.21678617 0.19492172 -0.06552113 0.02440467 -0.09682886 0.19366196 0.33354757 0.31295994 -0.08361546 -0.25342082 0.37325717] [-0.2837623 -0.32820154 -0.10496068 -0.22073452 -0.13708154 -0.14426375 -0.11503319 0.22424151 -0.03039502 -0.51505615 0.01725498 0.03895712 0.36069184 0.30902452 0.05003019] [-0.07787589 0.00374566 0.88685604 -0.26590028 -0.07932536 -0.04273492 -0.18653782 -0.35604718 -0.17497421 0.08869996 0.40025886 -0.05597969 0.13724479 0.21485613 -0.0112658 ] [-0.09229473 0.59209563 0.03133829 -0.03308086 -0.24308858 -0.09979855 0.03446019 0.09511981 -0.3380162 0.006386 -0.61207299 0.08132542 0.88683114 0.14254905 0.14776204] [-0.13189434 0.52878496 0.12652391 0.04511362 0.58373514 0.37291503 0.11395325 -0.29479222 -0.57014085 0.46291592 -0.09405018 0.13959097 -0.38607402 -0.4489706 -0.14602419] [ 0.05810766 -0.32289338 0.09313916 0.07242723 -0.56919401 0.52554237 0.23656926 -0.01178202 0.0718206 0.07827729 -0.13355752 0.22722721 0.14369455 -0.45198935 -0.55574794] [ 0.66145875 0.34633299 0.14098019 0.51882591 -0.28019898 -0.1603226 -0.06841334 -0.20428242 0.06967217 0.23112577 -0.04436858 -0.16455425 0.21620977 0.00427021 -0.08739901] [ 0.31599556 -0.02755186 0.13434254 0.13497371 0.05400568 -0.17374789 0.17525393 0.06025893 -0.17914162 -0.31056619 -0.25358691 0.02584754 -0.43006001 -0.62266361 -0.03399688] [-0.29038151 0.03410127 0.03490341 -0.12121764 0.02603071 -0.33546274 -0.41424111 0.05324838 -0.27099455 -0.0262513 0.41024137 0.26636349 0.15582891 -0.18666254 0.01989583] [-0.24388652 -0.44098852 0.01261883 0.24945112 0.07110189 0.24623792 0.17484502 0.00852868 0.2514707 -0.14659862 -0.08462515 0.36931333 -0.29955293 0.1104436 -0.75690139] [ 0.04149432 -0.25980564 0.46402128 -0.36112127 -0.94980789 -0.16504063 0.00309433 0.05279294 0.22523648 0.38390366 0.45562427 -0.18631744 0.0082334 0.16670803 0.16045688]]