| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | , , , , , , , , , ⊢ |
| : , : , : |
1 | reference | 42 | ⊢ |
2 | instantiation | 42, 4, 5 | , , , , , , , , , ⊢ |
| : , : , : |
3 | instantiation | 6, 116, 11, 7, 171, 150, 169, 181, 17, 18, 8* | , , , , , , , , , ⊢ |
| : , : , : , : |
4 | instantiation | 42, 9, 10 | , , , , , , , , , ⊢ |
| : , : , : |
5 | instantiation | 34, 11, 12, 171, 104, 13, 14 | , , , , , , , , , ⊢ |
| : , : , : , : , : |
6 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_scalar_association |
7 | instantiation | 124 | ⊢ |
| : , : , : , : |
8 | instantiation | 15, 116, 16, 17, 18 | , , , , , , , , , ⊢ |
| : , : , : |
9 | instantiation | 42, 19, 20 | , , , , , , , , , ⊢ |
| : , : , : |
10 | instantiation | 34, 21, 60, 150, 86, 22, 23 | , , , , , , , , , ⊢ |
| : , : , : , : , : |
11 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
12 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
13 | instantiation | 147 | ⊢ |
| : , : , : |
14 | instantiation | 156, 24, 25 | , , , , , , , , ⊢ |
| : , : , : |
15 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.scalar_mult_factorization |
16 | instantiation | 26, 27, 28 | , , , ⊢ |
| : , : , : |
17 | instantiation | 124 | ⊢ |
| : , : , : , : |
18 | instantiation | 156, 29, 30 | , , , , , ⊢ |
| : , : , : |
19 | instantiation | 34, 31, 59, 181, 32, 61, 33 | , , , , , , , , , ⊢ |
| : , : , : , : , : |
20 | instantiation | 34, 35, 56, 169, 71, 36 | , , , , , , , , , ⊢ |
| : , : , : , : , : |
21 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat5 |
22 | instantiation | 176 | ⊢ |
| : , : |
23 | instantiation | 156, 37, 38 | , , , , , , , , ⊢ |
| : , : , : |
24 | instantiation | 67, 39, 69 | , , , , , , , , ⊢ |
| : , : |
25 | instantiation | 165, 70, 40 | ⊢ |
| : , : , : |
26 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
27 | instantiation | 76, 57, 41 | , , , ⊢ |
| : , : |
28 | instantiation | 42, 43, 44 | , , , ⊢ |
| : , : , : |
29 | instantiation | 67, 45, 69 | , , , , , ⊢ |
| : , : |
30 | instantiation | 165, 139, 46 | ⊢ |
| : , : , : |
31 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat7 |
32 | instantiation | 47 | ⊢ |
| : , : , : , : , : , : , : |
33 | instantiation | 156, 48, 49 | , , , , , , , , ⊢ |
| : , : , : |
34 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_pulling_scalar_out_front |
35 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat6 |
36 | instantiation | 156, 50, 51 | , , , , , , , , ⊢ |
| : , : , : |
37 | instantiation | 67, 52, 69 | , , , , , , , , ⊢ |
| : , : |
38 | instantiation | 165, 70, 53 | ⊢ |
| : , : , : |
39 | instantiation | 156, 54, 55 | , , , , , , , , ⊢ |
| : , : , : |
40 | instantiation | 84 | ⊢ |
| : , : , : , : , : , : |
41 | instantiation | 76, 169, 181 | , ⊢ |
| : , : |
42 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
43 | instantiation | 58, 56, 60, 59, 160, 61, 57, 169, 181 | , , , ⊢ |
| : , : , : , : , : , : |
44 | instantiation | 58, 59, 60, 61, 62, 160, 171, 150, 169, 181 | , , , ⊢ |
| : , : , : , : , : , : |
45 | instantiation | 156, 63, 64 | , , , , , ⊢ |
| : , : , : |
46 | instantiation | 147 | ⊢ |
| : , : , : |
47 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_7_typical_eq |
48 | instantiation | 67, 65, 69 | , , , , , , , , ⊢ |
| : , : |
49 | instantiation | 165, 70, 66 | ⊢ |
| : , : , : |
50 | instantiation | 67, 68, 69 | , , , , , , , , ⊢ |
| : , : |
51 | instantiation | 165, 70, 71 | ⊢ |
| : , : , : |
52 | instantiation | 156, 72, 73 | , , , , , , , , ⊢ |
| : , : , : |
53 | instantiation | 84 | ⊢ |
| : , : , : , : , : , : |
54 | instantiation | 105, 152, 182, 74, 107 | , , , , , , , , ⊢ |
| : , : , : , : |
55 | instantiation | 165, 92, 75 | ⊢ |
| : , : , : |
56 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
57 | instantiation | 76, 171, 150 | , ⊢ |
| : , : |
58 | theorem | | ⊢ |
| proveit.numbers.multiplication.disassociation |
59 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
60 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
61 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
62 | instantiation | 176 | ⊢ |
| : , : |
63 | instantiation | 105, 152, 182, 77, 107 | , , , , , ⊢ |
| : , : , : , : |
64 | instantiation | 165, 166, 78 | ⊢ |
| : , : , : |
65 | instantiation | 156, 79, 80 | , , , , , , , , ⊢ |
| : , : , : |
66 | instantiation | 84 | ⊢ |
| : , : , : , : , : , : |
67 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_complex_left_closure |
68 | instantiation | 156, 81, 82 | , , , , , , , , ⊢ |
| : , : , : |
69 | instantiation | 83, 189, 190 | , ⊢ |
| : , : |
70 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat6 |
71 | instantiation | 84 | ⊢ |
| : , : , : , : , : , : |
72 | instantiation | 105, 152, 182, 85, 107 | , , , , , , , , ⊢ |
| : , : , : , : |
73 | instantiation | 165, 92, 86 | ⊢ |
| : , : , : |
74 | instantiation | 174, 152, 182, 87 | , , , , , , , ⊢ |
| : , : , : |
75 | instantiation | 100 | ⊢ |
| : , : , : , : , : |
76 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_complex_closure_bin |
77 | instantiation | 174, 152, 182, 88 | , , , , ⊢ |
| : , : , : |
78 | instantiation | 176 | ⊢ |
| : , : |
79 | instantiation | 168, 89, 182, 169 | , , , , , , , , ⊢ |
| : , : , : |
80 | instantiation | 165, 92, 90 | ⊢ |
| : , : , : |
81 | instantiation | 105, 152, 182, 91, 107 | , , , , , , , , ⊢ |
| : , : , : , : |
82 | instantiation | 165, 92, 93 | ⊢ |
| : , : , : |
83 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_bra_in_QmultCodomain |
84 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_6_typical_eq |
85 | instantiation | 174, 152, 182, 94 | , , , , , , , ⊢ |
| : , : , : |
86 | instantiation | 100 | ⊢ |
| : , : , : , : , : |
87 | instantiation | 156, 95, 96 | , , , , , , , ⊢ |
| : , : , : |
88 | instantiation | 151, 152, 189, 182, 183, 154 | , , , , ⊢ |
| : , : , : , : , : |
89 | instantiation | 156, 97, 98 | , , , , , , , ⊢ |
| : , : , : |
90 | instantiation | 100 | ⊢ |
| : , : , : , : , : |
91 | instantiation | 174, 152, 182, 99 | , , , , , , , ⊢ |
| : , : , : |
92 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat5 |
93 | instantiation | 100 | ⊢ |
| : , : , : , : , : |
94 | instantiation | 156, 101, 102 | , , , , , , , ⊢ |
| : , : , : |
95 | instantiation | 151, 152, 189, 182, 103, 154 | , , , , , , , ⊢ |
| : , : , : , : , : |
96 | instantiation | 165, 116, 104 | ⊢ |
| : , : , : |
97 | instantiation | 105, 152, 182, 106, 107 | , , , , , , , ⊢ |
| : , : , : , : |
98 | instantiation | 165, 116, 108 | ⊢ |
| : , : , : |
99 | instantiation | 156, 109, 110 | , , , , , , , ⊢ |
| : , : , : |
100 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_5_typical_eq |
101 | instantiation | 151, 152, 189, 182, 111, 154 | , , , , , , , ⊢ |
| : , : , : , : , : |
102 | instantiation | 165, 116, 112 | ⊢ |
| : , : , : |
103 | instantiation | 174, 189, 182, 113 | , , , , ⊢ |
| : , : , : |
104 | instantiation | 124 | ⊢ |
| : , : , : , : |
105 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_ket_is_ket |
106 | instantiation | 174, 152, 182, 114 | , , , , , , ⊢ |
| : , : , : |
107 | assumption | | ⊢ |
108 | instantiation | 124 | ⊢ |
| : , : , : , : |
109 | instantiation | 170, 150, 152, 182, 115 | , , , , , , , ⊢ |
| : , : , : , : |
110 | instantiation | 165, 116, 117 | ⊢ |
| : , : , : |
111 | instantiation | 174, 189, 182, 118 | , , , , ⊢ |
| : , : , : |
112 | instantiation | 124 | ⊢ |
| : , : , : , : |
113 | instantiation | 156, 119, 120 | , , , , ⊢ |
| : , : , : |
114 | instantiation | 156, 121, 122 | , , , , , , ⊢ |
| : , : , : |
115 | instantiation | 174, 152, 182, 123 | , , , , , , ⊢ |
| : , : , : |
116 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat4 |
117 | instantiation | 124 | ⊢ |
| : , : , : , : |
118 | instantiation | 156, 125, 126 | , , , , ⊢ |
| : , : , : |
119 | instantiation | 180, 127, 189, 182, 183 | , , , , ⊢ |
| : , : , : , : |
120 | instantiation | 165, 139, 128 | ⊢ |
| : , : , : |
121 | instantiation | 170, 150, 152, 182, 129 | , , , , , , ⊢ |
| : , : , : , : |
122 | instantiation | 165, 139, 130 | ⊢ |
| : , : , : |
123 | instantiation | 156, 131, 132 | , , , , , , ⊢ |
| : , : , : |
124 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
125 | instantiation | 170, 171, 189, 182, 133 | , , , , ⊢ |
| : , : , : , : |
126 | instantiation | 165, 139, 134 | ⊢ |
| : , : , : |
127 | instantiation | 156, 135, 136 | , , ⊢ |
| : , : , : |
128 | instantiation | 147 | ⊢ |
| : , : , : |
129 | instantiation | 174, 152, 182, 137 | , , , , , ⊢ |
| : , : , : |
130 | instantiation | 147 | ⊢ |
| : , : , : |
131 | instantiation | 151, 152, 189, 182, 138, 154 | , , , , , , ⊢ |
| : , : , : , : , : |
132 | instantiation | 165, 139, 140 | ⊢ |
| : , : , : |
133 | instantiation | 174, 189, 182, 141 | , , , ⊢ |
| : , : , : |
134 | instantiation | 147 | ⊢ |
| : , : , : |
135 | instantiation | 168, 142, 182, 181 | , , ⊢ |
| : , : , : |
136 | instantiation | 165, 166, 143 | ⊢ |
| : , : , : |
137 | instantiation | 156, 144, 145 | , , , , , ⊢ |
| : , : , : |
138 | instantiation | 174, 189, 182, 146 | , , , ⊢ |
| : , : , : |
139 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
140 | instantiation | 147 | ⊢ |
| : , : , : |
141 | instantiation | 156, 148, 149 | , , , ⊢ |
| : , : , : |
142 | instantiation | 168, 150, 182, 169 | , ⊢ |
| : , : , : |
143 | instantiation | 176 | ⊢ |
| : , : |
144 | instantiation | 151, 152, 189, 182, 153, 154 | , , , , , ⊢ |
| : , : , : , : , : |
145 | instantiation | 165, 166, 155 | ⊢ |
| : , : , : |
146 | instantiation | 156, 157, 158 | , , , ⊢ |
| : , : , : |
147 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
148 | instantiation | 180, 159, 189, 182, 183 | , , , ⊢ |
| : , : , : , : |
149 | instantiation | 165, 166, 160 | ⊢ |
| : , : , : |
150 | assumption | | ⊢ |
151 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_op_is_op |
152 | instantiation | 194, 185 | ⊢ |
| : |
153 | instantiation | 174, 189, 182, 161 | , , ⊢ |
| : , : , : |
154 | instantiation | 162, 195, 185, 163 | , , , ⊢ |
| : , : , : |
155 | instantiation | 176 | ⊢ |
| : , : |
156 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
157 | instantiation | 170, 171, 189, 182, 164 | , , , ⊢ |
| : , : , : , : |
158 | instantiation | 165, 166, 167 | ⊢ |
| : , : , : |
159 | instantiation | 168, 169, 182, 181 | , ⊢ |
| : , : , : |
160 | instantiation | 176 | ⊢ |
| : , : |
161 | instantiation | 170, 171, 189, 182, 183 | , , ⊢ |
| : , : , : , : |
162 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_matrix_is_linmap |
163 | modus ponens | 172, 173 | , , , ⊢ |
164 | instantiation | 174, 189, 182, 175 | , , ⊢ |
| : , : , : |
165 | axiom | | ⊢ |
| proveit.physics.quantum.algebra.multi_qmult_def |
166 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
167 | instantiation | 176 | ⊢ |
| : , : |
168 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_complex_ket_closure |
169 | assumption | | ⊢ |
170 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_complex_closure |
171 | assumption | | ⊢ |
172 | instantiation | 177, 193, 178, 179 | , , ⊢ |
| : , : , : , : , : , : |
173 | assumption | | ⊢ |
174 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_is_linmap |
175 | instantiation | 180, 181, 189, 182, 183 | , , ⊢ |
| : , : , : , : |
176 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
177 | theorem | | ⊢ |
| proveit.linear_algebra.addition.summation_closure |
178 | instantiation | 184, 195, 185 | , ⊢ |
| : , : |
179 | instantiation | 186, 187 | ⊢ |
| : , : |
180 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_complex_op_closure |
181 | assumption | | ⊢ |
182 | theorem | | ⊢ |
| proveit.linear_algebra.inner_products.complex_set_is_hilbert_space |
183 | instantiation | 188, 189, 190 | , ⊢ |
| : , : |
184 | theorem | | ⊢ |
| proveit.linear_algebra.matrices.complex_matrix_space_is_vec_space |
185 | assumption | | ⊢ |
186 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.range_from1_len_typical_eq |
187 | instantiation | 191, 192, 193 | ⊢ |
| : , : , : |
188 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_bra_is_linmap |
189 | instantiation | 194, 195 | ⊢ |
| : |
190 | assumption | | ⊢ |
191 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
192 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nat_pos_within_nat |
193 | assumption | | ⊢ |
194 | theorem | | ⊢ |
| proveit.linear_algebra.inner_products.complex_vec_set_is_hilbert_space |
195 | assumption | | ⊢ |
*equality replacement requirements |