| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | , , , , , , , , , ⊢  |
| : , : , :  |
1 | axiom | | ⊢  |
| proveit.logic.equality.equals_transitivity |
2 | instantiation | 9, 4, 5, 95, 6, 7, 8 | , , , , , , , , , ⊢  |
| : , : , : , : , :  |
3 | instantiation | 9, 10, 11, 33, 24, 12 | , , , , , , , , , ⊢  |
| : , : , : , : , :  |
4 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat7 |
5 | axiom | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
6 | instantiation | 13 | ⊢  |
| : , : , : , : , : , : , :  |
7 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
8 | instantiation | 74, 14, 15 | , , , , , , , , ⊢  |
| : , : , :  |
9 | theorem | | ⊢  |
| proveit.physics.quantum.algebra.qmult_pulling_scalar_out_front |
10 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat6 |
11 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat1 |
12 | instantiation | 74, 16, 17 | , , , , , , , , ⊢  |
| : , : , :  |
13 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_7_typical_eq |
14 | instantiation | 20, 18, 22 | , , , , , , , , ⊢  |
| : , :  |
15 | instantiation | 81, 23, 19 | ⊢  |
| : , : , :  |
16 | instantiation | 20, 21, 22 | , , , , , , , , ⊢  |
| : , :  |
17 | instantiation | 81, 23, 24 | ⊢  |
| : , : , :  |
18 | instantiation | 74, 25, 26 | , , , , , , , , ⊢  |
| : , : , :  |
19 | instantiation | 30 | ⊢  |
| : , : , : , : , : , :  |
20 | theorem | | ⊢  |
| proveit.physics.quantum.algebra.qmult_complex_left_closure |
21 | instantiation | 74, 27, 28 | , , , , , , , , ⊢  |
| : , : , :  |
22 | instantiation | 29, 103, 104 | , ⊢  |
| : , :  |
23 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat6 |
24 | instantiation | 30 | ⊢  |
| : , : , : , : , : , :  |
25 | instantiation | 31, 32, 96, 33 | , , , , , , , , ⊢  |
| : , : , :  |
26 | instantiation | 81, 36, 34 | ⊢  |
| : , : , :  |
27 | instantiation | 42, 70, 96, 35, 44 | , , , , , , , , ⊢  |
| : , : , : , :  |
28 | instantiation | 81, 36, 37 | ⊢  |
| : , : , :  |
29 | theorem | | ⊢  |
| proveit.physics.quantum.algebra.qmult_bra_in_QmultCodomain |
30 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_6_typical_eq |
31 | theorem | | ⊢  |
| proveit.physics.quantum.algebra.qmult_complex_ket_closure |
32 | instantiation | 74, 38, 39 | , , , , , , , ⊢  |
| : , : , :  |
33 | assumption | | ⊢  |
34 | instantiation | 41 | ⊢  |
| : , : , : , : , :  |
35 | instantiation | 88, 70, 96, 40 | , , , , , , , ⊢  |
| : , : , :  |
36 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat5 |
37 | instantiation | 41 | ⊢  |
| : , : , : , : , :  |
38 | instantiation | 42, 70, 96, 43, 44 | , , , , , , , ⊢  |
| : , : , : , :  |
39 | instantiation | 81, 50, 45 | ⊢  |
| : , : , :  |
40 | instantiation | 74, 46, 47 | , , , , , , , ⊢  |
| : , : , :  |
41 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_5_typical_eq |
42 | theorem | | ⊢  |
| proveit.physics.quantum.algebra.qmult_op_ket_is_ket |
43 | instantiation | 88, 70, 96, 48 | , , , , , , ⊢  |
| : , : , :  |
44 | assumption | | ⊢  |
45 | instantiation | 55 | ⊢  |
| : , : , : , :  |
46 | instantiation | 84, 56, 70, 96, 49 | , , , , , , , ⊢  |
| : , : , : , :  |
47 | instantiation | 81, 50, 51 | ⊢  |
| : , : , :  |
48 | instantiation | 74, 52, 53 | , , , , , , ⊢  |
| : , : , :  |
49 | instantiation | 88, 70, 96, 54 | , , , , , , ⊢  |
| : , : , :  |
50 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat4 |
51 | instantiation | 55 | ⊢  |
| : , : , : , :  |
52 | instantiation | 84, 56, 70, 96, 57 | , , , , , , ⊢  |
| : , : , : , :  |
53 | instantiation | 81, 63, 58 | ⊢  |
| : , : , :  |
54 | instantiation | 74, 59, 60 | , , , , , , ⊢  |
| : , : , :  |
55 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
56 | assumption | | ⊢  |
57 | instantiation | 88, 70, 96, 61 | , , , , , ⊢  |
| : , : , :  |
58 | instantiation | 68 | ⊢  |
| : , : , :  |
59 | instantiation | 69, 70, 103, 96, 62, 72 | , , , , , , ⊢  |
| : , : , : , : , :  |
60 | instantiation | 81, 63, 64 | ⊢  |
| : , : , :  |
61 | instantiation | 74, 65, 66 | , , , , , ⊢  |
| : , : , :  |
62 | instantiation | 88, 103, 96, 67 | , , , ⊢  |
| : , : , :  |
63 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat3 |
64 | instantiation | 68 | ⊢  |
| : , : , :  |
65 | instantiation | 69, 70, 103, 96, 71, 72 | , , , , , ⊢  |
| : , : , : , : , :  |
66 | instantiation | 81, 82, 73 | ⊢  |
| : , : , :  |
67 | instantiation | 74, 75, 76 | , , , ⊢  |
| : , : , :  |
68 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
69 | theorem | | ⊢  |
| proveit.physics.quantum.algebra.qmult_op_op_is_op |
70 | instantiation | 108, 99 | ⊢  |
| :  |
71 | instantiation | 88, 103, 96, 77 | , , ⊢  |
| : , : , :  |
72 | instantiation | 78, 109, 99, 79 | , , , ⊢  |
| : , : , :  |
73 | instantiation | 90 | ⊢  |
| : , :  |
74 | theorem | | ⊢  |
| proveit.logic.equality.sub_left_side_into |
75 | instantiation | 84, 85, 103, 96, 80 | , , , ⊢  |
| : , : , : , :  |
76 | instantiation | 81, 82, 83 | ⊢  |
| : , : , :  |
77 | instantiation | 84, 85, 103, 96, 97 | , , ⊢  |
| : , : , : , :  |
78 | theorem | | ⊢  |
| proveit.physics.quantum.algebra.qmult_matrix_is_linmap |
79 | modus ponens | 86, 87 | , , , ⊢  |
80 | instantiation | 88, 103, 96, 89 | , , ⊢  |
| : , : , :  |
81 | axiom | | ⊢  |
| proveit.physics.quantum.algebra.multi_qmult_def |
82 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat2 |
83 | instantiation | 90 | ⊢  |
| : , :  |
84 | theorem | | ⊢  |
| proveit.physics.quantum.algebra.qmult_op_complex_closure |
85 | assumption | | ⊢  |
86 | instantiation | 91, 107, 92, 93 | , , ⊢  |
| : , : , : , : , : , :  |
87 | assumption | | ⊢  |
88 | theorem | | ⊢  |
| proveit.physics.quantum.algebra.qmult_op_is_linmap |
89 | instantiation | 94, 95, 103, 96, 97 | , , ⊢  |
| : , : , : , :  |
90 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
91 | theorem | | ⊢  |
| proveit.linear_algebra.addition.summation_closure |
92 | instantiation | 98, 109, 99 | , ⊢  |
| : , :  |
93 | instantiation | 100, 101 | ⊢  |
| : , :  |
94 | theorem | | ⊢  |
| proveit.physics.quantum.algebra.qmult_complex_op_closure |
95 | assumption | | ⊢  |
96 | theorem | | ⊢  |
| proveit.linear_algebra.inner_products.complex_set_is_hilbert_space |
97 | instantiation | 102, 103, 104 | , ⊢  |
| : , :  |
98 | theorem | | ⊢  |
| proveit.linear_algebra.matrices.complex_matrix_space_is_vec_space |
99 | assumption | | ⊢  |
100 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.range_from1_len_typical_eq |
101 | instantiation | 105, 106, 107 | ⊢  |
| : , : , :  |
102 | theorem | | ⊢  |
| proveit.physics.quantum.algebra.qmult_bra_is_linmap |
103 | instantiation | 108, 109 | ⊢  |
| :  |
104 | assumption | | ⊢  |
105 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
106 | theorem | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.nat_pos_within_nat |
107 | assumption | | ⊢  |
108 | theorem | | ⊢  |
| proveit.linear_algebra.inner_products.complex_vec_set_is_hilbert_space |
109 | assumption | | ⊢  |