| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3 | , , , , , , , , , ⊢  |
| | : , : , :  |
| 1 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 2 | instantiation | 9, 4, 5, 95, 6, 7, 8 | , , , , , , , , , ⊢  |
| | : , : , : , : , :  |
| 3 | instantiation | 9, 10, 11, 33, 24, 12 | , , , , , , , , , ⊢  |
| | : , : , : , : , :  |
| 4 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat7 |
| 5 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 6 | instantiation | 13 | ⊢  |
| | : , : , : , : , : , : , :  |
| 7 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 8 | instantiation | 74, 14, 15 | , , , , , , , , ⊢  |
| | : , : , :  |
| 9 | theorem | | ⊢  |
| | proveit.physics.quantum.algebra.qmult_pulling_scalar_out_front |
| 10 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat6 |
| 11 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 12 | instantiation | 74, 16, 17 | , , , , , , , , ⊢  |
| | : , : , :  |
| 13 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_7_typical_eq |
| 14 | instantiation | 20, 18, 22 | , , , , , , , , ⊢  |
| | : , :  |
| 15 | instantiation | 81, 23, 19 | ⊢  |
| | : , : , :  |
| 16 | instantiation | 20, 21, 22 | , , , , , , , , ⊢  |
| | : , :  |
| 17 | instantiation | 81, 23, 24 | ⊢  |
| | : , : , :  |
| 18 | instantiation | 74, 25, 26 | , , , , , , , , ⊢  |
| | : , : , :  |
| 19 | instantiation | 30 | ⊢  |
| | : , : , : , : , : , :  |
| 20 | theorem | | ⊢  |
| | proveit.physics.quantum.algebra.qmult_complex_left_closure |
| 21 | instantiation | 74, 27, 28 | , , , , , , , , ⊢  |
| | : , : , :  |
| 22 | instantiation | 29, 103, 104 | , ⊢  |
| | : , :  |
| 23 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat6 |
| 24 | instantiation | 30 | ⊢  |
| | : , : , : , : , : , :  |
| 25 | instantiation | 31, 32, 96, 33 | , , , , , , , , ⊢  |
| | : , : , :  |
| 26 | instantiation | 81, 36, 34 | ⊢  |
| | : , : , :  |
| 27 | instantiation | 42, 70, 96, 35, 44 | , , , , , , , , ⊢  |
| | : , : , : , :  |
| 28 | instantiation | 81, 36, 37 | ⊢  |
| | : , : , :  |
| 29 | theorem | | ⊢  |
| | proveit.physics.quantum.algebra.qmult_bra_in_QmultCodomain |
| 30 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_6_typical_eq |
| 31 | theorem | | ⊢  |
| | proveit.physics.quantum.algebra.qmult_complex_ket_closure |
| 32 | instantiation | 74, 38, 39 | , , , , , , , ⊢  |
| | : , : , :  |
| 33 | assumption | | ⊢  |
| 34 | instantiation | 41 | ⊢  |
| | : , : , : , : , :  |
| 35 | instantiation | 88, 70, 96, 40 | , , , , , , , ⊢  |
| | : , : , :  |
| 36 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat5 |
| 37 | instantiation | 41 | ⊢  |
| | : , : , : , : , :  |
| 38 | instantiation | 42, 70, 96, 43, 44 | , , , , , , , ⊢  |
| | : , : , : , :  |
| 39 | instantiation | 81, 50, 45 | ⊢  |
| | : , : , :  |
| 40 | instantiation | 74, 46, 47 | , , , , , , , ⊢  |
| | : , : , :  |
| 41 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_5_typical_eq |
| 42 | theorem | | ⊢  |
| | proveit.physics.quantum.algebra.qmult_op_ket_is_ket |
| 43 | instantiation | 88, 70, 96, 48 | , , , , , , ⊢  |
| | : , : , :  |
| 44 | assumption | | ⊢  |
| 45 | instantiation | 55 | ⊢  |
| | : , : , : , :  |
| 46 | instantiation | 84, 56, 70, 96, 49 | , , , , , , , ⊢  |
| | : , : , : , :  |
| 47 | instantiation | 81, 50, 51 | ⊢  |
| | : , : , :  |
| 48 | instantiation | 74, 52, 53 | , , , , , , ⊢  |
| | : , : , :  |
| 49 | instantiation | 88, 70, 96, 54 | , , , , , , ⊢  |
| | : , : , :  |
| 50 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat4 |
| 51 | instantiation | 55 | ⊢  |
| | : , : , : , :  |
| 52 | instantiation | 84, 56, 70, 96, 57 | , , , , , , ⊢  |
| | : , : , : , :  |
| 53 | instantiation | 81, 63, 58 | ⊢  |
| | : , : , :  |
| 54 | instantiation | 74, 59, 60 | , , , , , , ⊢  |
| | : , : , :  |
| 55 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
| 56 | assumption | | ⊢  |
| 57 | instantiation | 88, 70, 96, 61 | , , , , , ⊢  |
| | : , : , :  |
| 58 | instantiation | 68 | ⊢  |
| | : , : , :  |
| 59 | instantiation | 69, 70, 103, 96, 62, 72 | , , , , , , ⊢  |
| | : , : , : , : , :  |
| 60 | instantiation | 81, 63, 64 | ⊢  |
| | : , : , :  |
| 61 | instantiation | 74, 65, 66 | , , , , , ⊢  |
| | : , : , :  |
| 62 | instantiation | 88, 103, 96, 67 | , , , ⊢  |
| | : , : , :  |
| 63 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 64 | instantiation | 68 | ⊢  |
| | : , : , :  |
| 65 | instantiation | 69, 70, 103, 96, 71, 72 | , , , , , ⊢  |
| | : , : , : , : , :  |
| 66 | instantiation | 81, 82, 73 | ⊢  |
| | : , : , :  |
| 67 | instantiation | 74, 75, 76 | , , , ⊢  |
| | : , : , :  |
| 68 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
| 69 | theorem | | ⊢  |
| | proveit.physics.quantum.algebra.qmult_op_op_is_op |
| 70 | instantiation | 108, 99 | ⊢  |
| | :  |
| 71 | instantiation | 88, 103, 96, 77 | , , ⊢  |
| | : , : , :  |
| 72 | instantiation | 78, 109, 99, 79 | , , , ⊢  |
| | : , : , :  |
| 73 | instantiation | 90 | ⊢  |
| | : , :  |
| 74 | theorem | | ⊢  |
| | proveit.logic.equality.sub_left_side_into |
| 75 | instantiation | 84, 85, 103, 96, 80 | , , , ⊢  |
| | : , : , : , :  |
| 76 | instantiation | 81, 82, 83 | ⊢  |
| | : , : , :  |
| 77 | instantiation | 84, 85, 103, 96, 97 | , , ⊢  |
| | : , : , : , :  |
| 78 | theorem | | ⊢  |
| | proveit.physics.quantum.algebra.qmult_matrix_is_linmap |
| 79 | modus ponens | 86, 87 | , , , ⊢  |
| 80 | instantiation | 88, 103, 96, 89 | , , ⊢  |
| | : , : , :  |
| 81 | axiom | | ⊢  |
| | proveit.physics.quantum.algebra.multi_qmult_def |
| 82 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 83 | instantiation | 90 | ⊢  |
| | : , :  |
| 84 | theorem | | ⊢  |
| | proveit.physics.quantum.algebra.qmult_op_complex_closure |
| 85 | assumption | | ⊢  |
| 86 | instantiation | 91, 107, 92, 93 | , , ⊢  |
| | : , : , : , : , : , :  |
| 87 | assumption | | ⊢  |
| 88 | theorem | | ⊢  |
| | proveit.physics.quantum.algebra.qmult_op_is_linmap |
| 89 | instantiation | 94, 95, 103, 96, 97 | , , ⊢  |
| | : , : , : , :  |
| 90 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 91 | theorem | | ⊢  |
| | proveit.linear_algebra.addition.summation_closure |
| 92 | instantiation | 98, 109, 99 | , ⊢  |
| | : , :  |
| 93 | instantiation | 100, 101 | ⊢  |
| | : , :  |
| 94 | theorem | | ⊢  |
| | proveit.physics.quantum.algebra.qmult_complex_op_closure |
| 95 | assumption | | ⊢  |
| 96 | theorem | | ⊢  |
| | proveit.linear_algebra.inner_products.complex_set_is_hilbert_space |
| 97 | instantiation | 102, 103, 104 | , ⊢  |
| | : , :  |
| 98 | theorem | | ⊢  |
| | proveit.linear_algebra.matrices.complex_matrix_space_is_vec_space |
| 99 | assumption | | ⊢  |
| 100 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.range_from1_len_typical_eq |
| 101 | instantiation | 105, 106, 107 | ⊢  |
| | : , : , :  |
| 102 | theorem | | ⊢  |
| | proveit.physics.quantum.algebra.qmult_bra_is_linmap |
| 103 | instantiation | 108, 109 | ⊢  |
| | :  |
| 104 | assumption | | ⊢  |
| 105 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 106 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.nat_pos_within_nat |
| 107 | assumption | | ⊢  |
| 108 | theorem | | ⊢  |
| | proveit.linear_algebra.inner_products.complex_vec_set_is_hilbert_space |
| 109 | assumption | | ⊢  |