logo

Expression of type InSet

from the theory of proveit.physics.quantum.algebra

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprRange, Function, IndexedVar, Q, Variable, c, f, j, m, n
from proveit.linear_algebra import LinMap, VecSum
from proveit.logic import CartExp, InSet
from proveit.numbers import Complex, one
from proveit.physics.quantum import Qmult
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
sub_expr2 = [ExprRange(sub_expr1, IndexedVar(c, sub_expr1), one, j)]
expr = InSet(Qmult(VecSum(index_or_indices = sub_expr2, summand = Function(f, sub_expr2), condition = Function(Q, sub_expr2))), LinMap(CartExp(Complex, m), CartExp(Complex, n)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left[\sum_{c_{1}, c_{2}, \ldots, c_{j}~|~Q\left(c_{1}, c_{2}, \ldots, c_{j}\right)}~f\left(c_{1}, c_{2}, \ldots, c_{j}\right)\right] \in \mathcal{L}\left(\mathbb{C}^{m}, \mathbb{C}^{n}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 5
operand: 9
4Operationoperator: 7
operands: 8
5Literal
6ExprTuple9
7Literal
8ExprTuple10, 11
9Operationoperator: 12
operand: 17
10Operationoperator: 15
operands: 14
11Operationoperator: 15
operands: 16
12Literal
13ExprTuple17
14ExprTuple19, 18
15Literal
16ExprTuple19, 20
17Lambdaparameters: 26
body: 21
18Variable
19Literal
20Variable
21Conditionalvalue: 22
condition: 23
22Operationoperator: 24
operands: 26
23Operationoperator: 25
operands: 26
24Variable
25Variable
26ExprTuple27
27ExprRangelambda_map: 28
start_index: 29
end_index: 30
28Lambdaparameter: 34
body: 31
29Literal
30Variable
31IndexedVarvariable: 32
index: 34
32Variable
33ExprTuple34
34Variable