| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11* | , , , , , , , , , ⊢ |
| : , : , : , : |
1 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_scalar_association |
2 | reference | 13 | ⊢ |
3 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
4 | instantiation | 20 | ⊢ |
| : , : , : , : |
5 | reference | 48 | ⊢ |
6 | reference | 49 | ⊢ |
7 | reference | 40 | ⊢ |
8 | reference | 41 | ⊢ |
9 | reference | 15 | ⊢ |
10 | reference | 16 | , , , , , ⊢ |
11 | instantiation | 12, 13, 14, 15, 16 | , , , , , , , , , ⊢ |
| : , : , : |
12 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.scalar_mult_factorization |
13 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat4 |
14 | instantiation | 17, 18, 19 | , , , ⊢ |
| : , : , : |
15 | instantiation | 20 | ⊢ |
| : , : , : , : |
16 | instantiation | 42, 21, 22 | , , , , , ⊢ |
| : , : , : |
17 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
18 | instantiation | 47, 33, 23 | , , , ⊢ |
| : , : |
19 | instantiation | 24, 25, 26 | , , , ⊢ |
| : , : , : |
20 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
21 | instantiation | 27, 28, 29 | , , , , , ⊢ |
| : , : |
22 | instantiation | 53, 30, 31 | ⊢ |
| : , : , : |
23 | instantiation | 47, 40, 41 | , ⊢ |
| : , : |
24 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
25 | instantiation | 34, 32, 36, 35, 39, 37, 33, 40, 41 | , , , ⊢ |
| : , : , : , : , : , : |
26 | instantiation | 34, 35, 36, 37, 38, 39, 48, 49, 40, 41 | , , , ⊢ |
| : , : , : , : , : , : |
27 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_complex_left_closure |
28 | instantiation | 42, 43, 44 | , , , , , ⊢ |
| : , : , : |
29 | instantiation | 45, 65, 66 | , ⊢ |
| : , : |
30 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
31 | instantiation | 46 | ⊢ |
| : , : , : |
32 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
33 | instantiation | 47, 48, 49 | , ⊢ |
| : , : |
34 | theorem | | ⊢ |
| proveit.numbers.multiplication.disassociation |
35 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
36 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
37 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
38 | instantiation | 58 | ⊢ |
| : , : |
39 | instantiation | 58 | ⊢ |
| : , : |
40 | assumption | | ⊢ |
41 | assumption | | ⊢ |
42 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
43 | instantiation | 50, 60, 61, 51, 52 | , , , , , ⊢ |
| : , : , : , : |
44 | instantiation | 53, 54, 55 | ⊢ |
| : , : , : |
45 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_bra_in_QmultCodomain |
46 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
47 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_complex_closure_bin |
48 | assumption | | ⊢ |
49 | assumption | | ⊢ |
50 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_ket_is_ket |
51 | instantiation | 56, 60, 61, 57 | , , , , ⊢ |
| : , : , : |
52 | assumption | | ⊢ |
53 | axiom | | ⊢ |
| proveit.physics.quantum.algebra.multi_qmult_def |
54 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
55 | instantiation | 58 | ⊢ |
| : , : |
56 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_is_linmap |
57 | instantiation | 59, 60, 65, 61, 62, 63 | , , , , ⊢ |
| : , : , : , : , : |
58 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
59 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_op_is_op |
60 | instantiation | 69, 77 | ⊢ |
| : |
61 | theorem | | ⊢ |
| proveit.linear_algebra.inner_products.complex_set_is_hilbert_space |
62 | instantiation | 64, 65, 66 | , ⊢ |
| : , : |
63 | instantiation | 67, 76, 77, 68 | , , , ⊢ |
| : , : , : |
64 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_bra_is_linmap |
65 | instantiation | 69, 76 | ⊢ |
| : |
66 | assumption | | ⊢ |
67 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_matrix_is_linmap |
68 | modus ponens | 70, 71 | , , , ⊢ |
69 | theorem | | ⊢ |
| proveit.linear_algebra.inner_products.complex_vec_set_is_hilbert_space |
70 | instantiation | 72, 82, 73, 74 | , , ⊢ |
| : , : , : , : , : , : |
71 | assumption | | ⊢ |
72 | theorem | | ⊢ |
| proveit.linear_algebra.addition.summation_closure |
73 | instantiation | 75, 76, 77 | , ⊢ |
| : , : |
74 | instantiation | 78, 79 | ⊢ |
| : , : |
75 | theorem | | ⊢ |
| proveit.linear_algebra.matrices.complex_matrix_space_is_vec_space |
76 | assumption | | ⊢ |
77 | assumption | | ⊢ |
78 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.range_from1_len_typical_eq |
79 | instantiation | 80, 81, 82 | ⊢ |
| : , : , : |
80 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
81 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nat_pos_within_nat |
82 | assumption | | ⊢ |
*equality replacement requirements |