| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11* | , , , , , , , , , ⊢  |
| | : , : , : , :  |
| 1 | theorem | | ⊢  |
| | proveit.physics.quantum.algebra.qmult_scalar_association |
| 2 | reference | 13 | ⊢  |
| 3 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| 4 | instantiation | 20 | ⊢  |
| | : , : , : , :  |
| 5 | reference | 48 | ⊢  |
| 6 | reference | 49 | ⊢  |
| 7 | reference | 40 | ⊢  |
| 8 | reference | 41 | ⊢  |
| 9 | reference | 15 | ⊢  |
| 10 | reference | 16 | , , , , , ⊢  |
| 11 | instantiation | 12, 13, 14, 15, 16 | , , , , , , , , , ⊢  |
| | : , : , :  |
| 12 | theorem | | ⊢  |
| | proveit.physics.quantum.algebra.scalar_mult_factorization |
| 13 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat4 |
| 14 | instantiation | 17, 18, 19 | , , , ⊢  |
| | : , : , :  |
| 15 | instantiation | 20 | ⊢  |
| | : , : , : , :  |
| 16 | instantiation | 42, 21, 22 | , , , , , ⊢  |
| | : , : , :  |
| 17 | theorem | | ⊢  |
| | proveit.logic.equality.sub_right_side_into |
| 18 | instantiation | 47, 33, 23 | , , , ⊢  |
| | : , :  |
| 19 | instantiation | 24, 25, 26 | , , , ⊢  |
| | : , : , :  |
| 20 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
| 21 | instantiation | 27, 28, 29 | , , , , , ⊢  |
| | : , :  |
| 22 | instantiation | 53, 30, 31 | ⊢  |
| | : , : , :  |
| 23 | instantiation | 47, 40, 41 | , ⊢  |
| | : , :  |
| 24 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 25 | instantiation | 34, 32, 36, 35, 39, 37, 33, 40, 41 | , , , ⊢  |
| | : , : , : , : , : , :  |
| 26 | instantiation | 34, 35, 36, 37, 38, 39, 48, 49, 40, 41 | , , , ⊢  |
| | : , : , : , : , : , :  |
| 27 | theorem | | ⊢  |
| | proveit.physics.quantum.algebra.qmult_complex_left_closure |
| 28 | instantiation | 42, 43, 44 | , , , , , ⊢  |
| | : , : , :  |
| 29 | instantiation | 45, 65, 66 | , ⊢  |
| | : , :  |
| 30 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 31 | instantiation | 46 | ⊢  |
| | : , : , :  |
| 32 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 33 | instantiation | 47, 48, 49 | , ⊢  |
| | : , :  |
| 34 | theorem | | ⊢  |
| | proveit.numbers.multiplication.disassociation |
| 35 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 36 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 37 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 38 | instantiation | 58 | ⊢  |
| | : , :  |
| 39 | instantiation | 58 | ⊢  |
| | : , :  |
| 40 | assumption | | ⊢  |
| 41 | assumption | | ⊢  |
| 42 | theorem | | ⊢  |
| | proveit.logic.equality.sub_left_side_into |
| 43 | instantiation | 50, 60, 61, 51, 52 | , , , , , ⊢  |
| | : , : , : , :  |
| 44 | instantiation | 53, 54, 55 | ⊢  |
| | : , : , :  |
| 45 | theorem | | ⊢  |
| | proveit.physics.quantum.algebra.qmult_bra_in_QmultCodomain |
| 46 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
| 47 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_complex_closure_bin |
| 48 | assumption | | ⊢  |
| 49 | assumption | | ⊢  |
| 50 | theorem | | ⊢  |
| | proveit.physics.quantum.algebra.qmult_op_ket_is_ket |
| 51 | instantiation | 56, 60, 61, 57 | , , , , ⊢  |
| | : , : , :  |
| 52 | assumption | | ⊢  |
| 53 | axiom | | ⊢  |
| | proveit.physics.quantum.algebra.multi_qmult_def |
| 54 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 55 | instantiation | 58 | ⊢  |
| | : , :  |
| 56 | theorem | | ⊢  |
| | proveit.physics.quantum.algebra.qmult_op_is_linmap |
| 57 | instantiation | 59, 60, 65, 61, 62, 63 | , , , , ⊢  |
| | : , : , : , : , :  |
| 58 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 59 | theorem | | ⊢  |
| | proveit.physics.quantum.algebra.qmult_op_op_is_op |
| 60 | instantiation | 69, 77 | ⊢  |
| | :  |
| 61 | theorem | | ⊢  |
| | proveit.linear_algebra.inner_products.complex_set_is_hilbert_space |
| 62 | instantiation | 64, 65, 66 | , ⊢  |
| | : , :  |
| 63 | instantiation | 67, 76, 77, 68 | , , , ⊢  |
| | : , : , :  |
| 64 | theorem | | ⊢  |
| | proveit.physics.quantum.algebra.qmult_bra_is_linmap |
| 65 | instantiation | 69, 76 | ⊢  |
| | :  |
| 66 | assumption | | ⊢  |
| 67 | theorem | | ⊢  |
| | proveit.physics.quantum.algebra.qmult_matrix_is_linmap |
| 68 | modus ponens | 70, 71 | , , , ⊢  |
| 69 | theorem | | ⊢  |
| | proveit.linear_algebra.inner_products.complex_vec_set_is_hilbert_space |
| 70 | instantiation | 72, 82, 73, 74 | , , ⊢  |
| | : , : , : , : , : , :  |
| 71 | assumption | | ⊢  |
| 72 | theorem | | ⊢  |
| | proveit.linear_algebra.addition.summation_closure |
| 73 | instantiation | 75, 76, 77 | , ⊢  |
| | : , :  |
| 74 | instantiation | 78, 79 | ⊢  |
| | : , :  |
| 75 | theorem | | ⊢  |
| | proveit.linear_algebra.matrices.complex_matrix_space_is_vec_space |
| 76 | assumption | | ⊢  |
| 77 | assumption | | ⊢  |
| 78 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.range_from1_len_typical_eq |
| 79 | instantiation | 80, 81, 82 | ⊢  |
| | : , : , :  |
| 80 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 81 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.nat_pos_within_nat |
| 82 | assumption | | ⊢  |
| *equality replacement requirements |