| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | , , , , , , , , , ⊢ |
| : , : , : |
1 | reference | 4 | ⊢ |
2 | instantiation | 4, 5, 6 | , , , , , , , , , ⊢ |
| : , : , : |
3 | instantiation | 16, 7, 8, 77, 45, 9, 10 | , , , , , , , , , ⊢ |
| : , : , : , : , : |
4 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
5 | instantiation | 16, 11, 12, 125, 13, 14, 15 | , , , , , , , , , ⊢ |
| : , : , : , : , : |
6 | instantiation | 16, 17, 18, 113, 35, 19 | , , , , , , , , , ⊢ |
| : , : , : , : , : |
7 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat5 |
8 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
9 | instantiation | 120 | ⊢ |
| : , : |
10 | instantiation | 100, 20, 21 | , , , , , , , , ⊢ |
| : , : , : |
11 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat7 |
12 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
13 | instantiation | 22 | ⊢ |
| : , : , : , : , : , : , : |
14 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
15 | instantiation | 100, 23, 24 | , , , , , , , , ⊢ |
| : , : , : |
16 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_pulling_scalar_out_front |
17 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat6 |
18 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
19 | instantiation | 100, 25, 26 | , , , , , , , , ⊢ |
| : , : , : |
20 | instantiation | 31, 27, 33 | , , , , , , , , ⊢ |
| : , : |
21 | instantiation | 109, 34, 28 | ⊢ |
| : , : , : |
22 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_7_typical_eq |
23 | instantiation | 31, 29, 33 | , , , , , , , , ⊢ |
| : , : |
24 | instantiation | 109, 34, 30 | ⊢ |
| : , : , : |
25 | instantiation | 31, 32, 33 | , , , , , , , , ⊢ |
| : , : |
26 | instantiation | 109, 34, 35 | ⊢ |
| : , : , : |
27 | instantiation | 100, 36, 37 | , , , , , , , , ⊢ |
| : , : , : |
28 | instantiation | 43 | ⊢ |
| : , : , : , : , : , : |
29 | instantiation | 100, 38, 39 | , , , , , , , , ⊢ |
| : , : , : |
30 | instantiation | 43 | ⊢ |
| : , : , : , : , : , : |
31 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_complex_left_closure |
32 | instantiation | 100, 40, 41 | , , , , , , , , ⊢ |
| : , : , : |
33 | instantiation | 42, 133, 134 | , ⊢ |
| : , : |
34 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat6 |
35 | instantiation | 43 | ⊢ |
| : , : , : , : , : , : |
36 | instantiation | 58, 96, 126, 44, 60 | , , , , , , , , ⊢ |
| : , : , : , : |
37 | instantiation | 109, 49, 45 | ⊢ |
| : , : , : |
38 | instantiation | 112, 46, 126, 113 | , , , , , , , , ⊢ |
| : , : , : |
39 | instantiation | 109, 49, 47 | ⊢ |
| : , : , : |
40 | instantiation | 58, 96, 126, 48, 60 | , , , , , , , , ⊢ |
| : , : , : , : |
41 | instantiation | 109, 49, 50 | ⊢ |
| : , : , : |
42 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_bra_in_QmultCodomain |
43 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_6_typical_eq |
44 | instantiation | 118, 96, 126, 51 | , , , , , , , ⊢ |
| : , : , : |
45 | instantiation | 55 | ⊢ |
| : , : , : , : , : |
46 | instantiation | 100, 52, 53 | , , , , , , , ⊢ |
| : , : , : |
47 | instantiation | 55 | ⊢ |
| : , : , : , : , : |
48 | instantiation | 118, 96, 126, 54 | , , , , , , , ⊢ |
| : , : , : |
49 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat5 |
50 | instantiation | 55 | ⊢ |
| : , : , : , : , : |
51 | instantiation | 100, 56, 57 | , , , , , , , ⊢ |
| : , : , : |
52 | instantiation | 58, 96, 126, 59, 60 | , , , , , , , ⊢ |
| : , : , : , : |
53 | instantiation | 109, 68, 61 | ⊢ |
| : , : , : |
54 | instantiation | 100, 62, 63 | , , , , , , , ⊢ |
| : , : , : |
55 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_5_typical_eq |
56 | instantiation | 95, 96, 133, 126, 64, 98 | , , , , , , , ⊢ |
| : , : , : , : , : |
57 | instantiation | 109, 68, 65 | ⊢ |
| : , : , : |
58 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_ket_is_ket |
59 | instantiation | 118, 96, 126, 66 | , , , , , , ⊢ |
| : , : , : |
60 | assumption | | ⊢ |
61 | instantiation | 74 | ⊢ |
| : , : , : , : |
62 | instantiation | 114, 77, 96, 126, 67 | , , , , , , , ⊢ |
| : , : , : , : |
63 | instantiation | 109, 68, 69 | ⊢ |
| : , : , : |
64 | instantiation | 118, 133, 126, 70 | , , , , ⊢ |
| : , : , : |
65 | instantiation | 74 | ⊢ |
| : , : , : , : |
66 | instantiation | 100, 71, 72 | , , , , , , ⊢ |
| : , : , : |
67 | instantiation | 118, 96, 126, 73 | , , , , , , ⊢ |
| : , : , : |
68 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat4 |
69 | instantiation | 74 | ⊢ |
| : , : , : , : |
70 | instantiation | 100, 75, 76 | , , , , ⊢ |
| : , : , : |
71 | instantiation | 114, 77, 96, 126, 78 | , , , , , , ⊢ |
| : , : , : , : |
72 | instantiation | 109, 86, 79 | ⊢ |
| : , : , : |
73 | instantiation | 100, 80, 81 | , , , , , , ⊢ |
| : , : , : |
74 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
75 | instantiation | 114, 115, 133, 126, 82 | , , , , ⊢ |
| : , : , : , : |
76 | instantiation | 109, 86, 83 | ⊢ |
| : , : , : |
77 | assumption | | ⊢ |
78 | instantiation | 118, 96, 126, 84 | , , , , , ⊢ |
| : , : , : |
79 | instantiation | 92 | ⊢ |
| : , : , : |
80 | instantiation | 95, 96, 133, 126, 85, 98 | , , , , , , ⊢ |
| : , : , : , : , : |
81 | instantiation | 109, 86, 87 | ⊢ |
| : , : , : |
82 | instantiation | 118, 133, 126, 88 | , , , ⊢ |
| : , : , : |
83 | instantiation | 92 | ⊢ |
| : , : , : |
84 | instantiation | 100, 89, 90 | , , , , , ⊢ |
| : , : , : |
85 | instantiation | 118, 133, 126, 91 | , , , ⊢ |
| : , : , : |
86 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
87 | instantiation | 92 | ⊢ |
| : , : , : |
88 | instantiation | 100, 93, 94 | , , , ⊢ |
| : , : , : |
89 | instantiation | 95, 96, 133, 126, 97, 98 | , , , , , ⊢ |
| : , : , : , : , : |
90 | instantiation | 109, 110, 99 | ⊢ |
| : , : , : |
91 | instantiation | 100, 101, 102 | , , , ⊢ |
| : , : , : |
92 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
93 | instantiation | 124, 103, 133, 126, 127 | , , , ⊢ |
| : , : , : , : |
94 | instantiation | 109, 110, 104 | ⊢ |
| : , : , : |
95 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_op_is_op |
96 | instantiation | 138, 129 | ⊢ |
| : |
97 | instantiation | 118, 133, 126, 105 | , , ⊢ |
| : , : , : |
98 | instantiation | 106, 139, 129, 107 | , , , ⊢ |
| : , : , : |
99 | instantiation | 120 | ⊢ |
| : , : |
100 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
101 | instantiation | 114, 115, 133, 126, 108 | , , , ⊢ |
| : , : , : , : |
102 | instantiation | 109, 110, 111 | ⊢ |
| : , : , : |
103 | instantiation | 112, 113, 126, 125 | , ⊢ |
| : , : , : |
104 | instantiation | 120 | ⊢ |
| : , : |
105 | instantiation | 114, 115, 133, 126, 127 | , , ⊢ |
| : , : , : , : |
106 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_matrix_is_linmap |
107 | modus ponens | 116, 117 | , , , ⊢ |
108 | instantiation | 118, 133, 126, 119 | , , ⊢ |
| : , : , : |
109 | axiom | | ⊢ |
| proveit.physics.quantum.algebra.multi_qmult_def |
110 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
111 | instantiation | 120 | ⊢ |
| : , : |
112 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_complex_ket_closure |
113 | assumption | | ⊢ |
114 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_complex_closure |
115 | assumption | | ⊢ |
116 | instantiation | 121, 137, 122, 123 | , , ⊢ |
| : , : , : , : , : , : |
117 | assumption | | ⊢ |
118 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_is_linmap |
119 | instantiation | 124, 125, 133, 126, 127 | , , ⊢ |
| : , : , : , : |
120 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
121 | theorem | | ⊢ |
| proveit.linear_algebra.addition.summation_closure |
122 | instantiation | 128, 139, 129 | , ⊢ |
| : , : |
123 | instantiation | 130, 131 | ⊢ |
| : , : |
124 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_complex_op_closure |
125 | assumption | | ⊢ |
126 | theorem | | ⊢ |
| proveit.linear_algebra.inner_products.complex_set_is_hilbert_space |
127 | instantiation | 132, 133, 134 | , ⊢ |
| : , : |
128 | theorem | | ⊢ |
| proveit.linear_algebra.matrices.complex_matrix_space_is_vec_space |
129 | assumption | | ⊢ |
130 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.range_from1_len_typical_eq |
131 | instantiation | 135, 136, 137 | ⊢ |
| : , : , : |
132 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_bra_is_linmap |
133 | instantiation | 138, 139 | ⊢ |
| : |
134 | assumption | | ⊢ |
135 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
136 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nat_pos_within_nat |
137 | assumption | | ⊢ |
138 | theorem | | ⊢ |
| proveit.linear_algebra.inner_products.complex_vec_set_is_hilbert_space |
139 | assumption | | ⊢ |