| step type | requirements | statement |
0 | generalization | 1 | ⊢ |
1 | instantiation | 2, 9, 3, 4, 5, 6 | ⊢ |
| : , : , : |
2 | theorem | | ⊢ |
| proveit.logic.booleans.disjunction.singular_constructive_dilemma |
3 | instantiation | 7, 9 | ⊢ |
| : |
4 | instantiation | 8, 9 | ⊢ |
| : |
5 | deduction | 10 | ⊢ |
6 | instantiation | 11, 12, 13 | ⊢ |
| : , : |
7 | conjecture | | ⊢ |
| proveit.logic.booleans.negation.closure |
8 | conjecture | | ⊢ |
| proveit.logic.booleans.unfold_is_bool |
9 | instantiation | 14 | ⊢ |
| : , : |
10 | instantiation | 15, 33, 16 | ⊢ |
| : , : |
11 | theorem | | ⊢ |
| proveit.logic.equality.rhs_via_equality |
12 | deduction | 17 | ⊢ |
13 | instantiation | 18, 19 | ⊢ |
| : , : , : |
14 | axiom | | ⊢ |
| proveit.logic.equality.equality_in_bool |
15 | theorem | | ⊢ |
| proveit.logic.booleans.disjunction.or_if_only_left |
16 | instantiation | 20, 21 | ⊢ |
| : , : |
17 | instantiation | 22, 23, 24 | , ⊢ |
| : , : |
18 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
19 | instantiation | 25 | ⊢ |
| : , : |
20 | conjecture | | ⊢ |
| proveit.logic.sets.membership.double_negated_membership |
21 | instantiation | 148, 149, 26 | ⊢ |
| : , : , : |
22 | theorem | | ⊢ |
| proveit.logic.booleans.disjunction.or_if_only_right |
23 | instantiation | 27, 31 | ⊢ |
| : , : |
24 | instantiation | 28, 29, 30, 31 | , ⊢ |
| : , : |
25 | axiom | | ⊢ |
| proveit.logic.equality.not_equals_def |
26 | instantiation | 32, 75, 33 | ⊢ |
| : , : , : |
27 | theorem | | ⊢ |
| proveit.logic.equality.unfold_not_equals |
28 | conjecture | | ⊢ |
| proveit.numbers.number_sets.real_numbers.not_int_if_not_int_in_interval |
29 | conjecture | | ⊢ |
| proveit.numbers.number_sets.integers.zero_is_int |
30 | instantiation | 34, 35, 36, 90, 37 | ⊢ |
| : , : , : |
31 | assumption | | ⊢ |
32 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
33 | assumption | | ⊢ |
34 | conjecture | | ⊢ |
| proveit.numbers.number_sets.real_numbers.in_IntervalOO |
35 | instantiation | 53, 39, 38 | ⊢ |
| : , : |
36 | instantiation | 53, 39, 107 | ⊢ |
| : , : |
37 | instantiation | 40, 41, 42 | ⊢ |
| : , : |
38 | instantiation | 148, 144, 43 | ⊢ |
| : , : , : |
39 | conjecture | | ⊢ |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
40 | theorem | | ⊢ |
| proveit.logic.booleans.conjunction.and_if_both |
41 | instantiation | 44, 98, 45, 46, 47*, 48* | ⊢ |
| : , : , : |
42 | instantiation | 49, 50, 51 | ⊢ |
| : , : , : |
43 | instantiation | 148, 146, 52 | ⊢ |
| : , : , : |
44 | conjecture | | ⊢ |
| proveit.numbers.addition.strong_bound_via_left_term_bound |
45 | instantiation | 53, 90, 109 | ⊢ |
| : , : |
46 | instantiation | 54, 98, 90, 109, 55, 56 | ⊢ |
| : , : , : |
47 | instantiation | 64, 57, 58, 59 | ⊢ |
| : , : , : , : |
48 | instantiation | 112, 60, 61 | ⊢ |
| : , : , : |
49 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
50 | instantiation | 62, 90, 109, 63, 70 | ⊢ |
| : , : , : |
51 | instantiation | 64, 72, 65, 66 | ⊢ |
| : , : , : , : |
52 | instantiation | 67, 126 | ⊢ |
| : |
53 | conjecture | | ⊢ |
| proveit.numbers.addition.add_real_closure_bin |
54 | conjecture | | ⊢ |
| proveit.numbers.ordering.less_add_right |
55 | instantiation | 68, 98, 109, 99 | ⊢ |
| : , : , : |
56 | instantiation | 69, 70 | ⊢ |
| : , : |
57 | instantiation | 71, 80, 96, 72 | ⊢ |
| : , : , : |
58 | instantiation | 91 | ⊢ |
| : |
59 | instantiation | 84, 73 | ⊢ |
| : , : |
60 | instantiation | 74, 75, 150, 134, 76, 77, 81, 80, 78 | ⊢ |
| : , : , : , : , : , : |
61 | instantiation | 79, 80, 81, 82 | ⊢ |
| : , : , : |
62 | conjecture | | ⊢ |
| proveit.numbers.ordering.less_eq_add_right_strong |
63 | instantiation | 83, 98, 109, 99 | ⊢ |
| : , : , : |
64 | conjecture | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
65 | instantiation | 91 | ⊢ |
| : |
66 | instantiation | 84, 85 | ⊢ |
| : , : |
67 | conjecture | | ⊢ |
| proveit.numbers.negation.int_closure |
68 | conjecture | | ⊢ |
| proveit.numbers.number_sets.real_numbers.interval_oc_lower_bound |
69 | conjecture | | ⊢ |
| proveit.numbers.ordering.relax_less |
70 | instantiation | 86, 128 | ⊢ |
| : |
71 | conjecture | | ⊢ |
| proveit.numbers.addition.subtraction.negated_add |
72 | instantiation | 87, 126, 147, 88* | ⊢ |
| : , : , : , : |
73 | instantiation | 92, 89 | ⊢ |
| : |
74 | conjecture | | ⊢ |
| proveit.numbers.addition.disassociation |
75 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
76 | conjecture | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
77 | instantiation | 129 | ⊢ |
| : , : |
78 | instantiation | 148, 138, 98 | ⊢ |
| : , : , : |
79 | conjecture | | ⊢ |
| proveit.numbers.addition.subtraction.add_cancel_triple_23 |
80 | instantiation | 148, 138, 109 | ⊢ |
| : , : , : |
81 | instantiation | 148, 138, 90 | ⊢ |
| : , : , : |
82 | instantiation | 91 | ⊢ |
| : |
83 | conjecture | | ⊢ |
| proveit.numbers.number_sets.real_numbers.interval_oc_upper_bound |
84 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
85 | instantiation | 92, 96 | ⊢ |
| : |
86 | conjecture | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.positive_if_in_rational_pos |
87 | conjecture | | ⊢ |
| proveit.numbers.addition.rational_pair_addition |
88 | instantiation | 112, 93, 94 | ⊢ |
| : , : , : |
89 | instantiation | 95, 96 | ⊢ |
| : |
90 | instantiation | 97, 98, 109, 99 | ⊢ |
| : , : , : |
91 | axiom | | ⊢ |
| proveit.logic.equality.equals_reflexivity |
92 | conjecture | | ⊢ |
| proveit.numbers.addition.elim_zero_left |
93 | instantiation | 120, 150, 100, 101, 102, 103 | ⊢ |
| : , : , : , : |
94 | instantiation | 104, 105, 106 | ⊢ |
| : |
95 | conjecture | | ⊢ |
| proveit.numbers.negation.complex_closure |
96 | instantiation | 148, 138, 107 | ⊢ |
| : , : , : |
97 | conjecture | | ⊢ |
| proveit.numbers.number_sets.real_numbers.all_in_interval_oc__is__real |
98 | instantiation | 108, 109 | ⊢ |
| : |
99 | instantiation | 110, 111 | ⊢ |
| : |
100 | instantiation | 129 | ⊢ |
| : , : |
101 | instantiation | 129 | ⊢ |
| : , : |
102 | instantiation | 112, 113, 114 | ⊢ |
| : , : , : |
103 | conjecture | | ⊢ |
| proveit.numbers.numerals.decimals.mult_2_2 |
104 | conjecture | | ⊢ |
| proveit.numbers.division.frac_cancel_complete |
105 | instantiation | 148, 138, 115 | ⊢ |
| : , : , : |
106 | instantiation | 116, 117 | ⊢ |
| : |
107 | instantiation | 148, 144, 118 | ⊢ |
| : , : , : |
108 | conjecture | | ⊢ |
| proveit.numbers.negation.real_closure |
109 | instantiation | 148, 144, 119 | ⊢ |
| : , : , : |
110 | conjecture | | ⊢ |
| proveit.physics.quantum.QPE._delta_b_in_interval |
111 | assumption | | ⊢ |
112 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
113 | instantiation | 120, 150, 121, 122, 123, 124 | ⊢ |
| : , : , : , : |
114 | conjecture | | ⊢ |
| proveit.numbers.numerals.decimals.add_2_2 |
115 | instantiation | 148, 144, 125 | ⊢ |
| : , : , : |
116 | conjecture | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
117 | conjecture | | ⊢ |
| proveit.numbers.numerals.decimals.posnat4 |
118 | instantiation | 148, 146, 126 | ⊢ |
| : , : , : |
119 | instantiation | 148, 127, 128 | ⊢ |
| : , : , : |
120 | axiom | | ⊢ |
| proveit.core_expr_types.operations.operands_substitution |
121 | instantiation | 129 | ⊢ |
| : , : |
122 | instantiation | 129 | ⊢ |
| : , : |
123 | instantiation | 130, 132 | ⊢ |
| : |
124 | instantiation | 131, 132 | ⊢ |
| : |
125 | instantiation | 148, 146, 133 | ⊢ |
| : , : , : |
126 | instantiation | 148, 149, 134 | ⊢ |
| : , : , : |
127 | conjecture | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational |
128 | instantiation | 135, 136, 137 | ⊢ |
| : , : |
129 | conjecture | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
130 | conjecture | | ⊢ |
| proveit.numbers.multiplication.elim_one_left |
131 | conjecture | | ⊢ |
| proveit.numbers.multiplication.elim_one_right |
132 | instantiation | 148, 138, 139 | ⊢ |
| : , : , : |
133 | instantiation | 148, 149, 140 | ⊢ |
| : , : , : |
134 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
135 | conjecture | | ⊢ |
| proveit.numbers.division.div_rational_pos_closure |
136 | instantiation | 148, 142, 141 | ⊢ |
| : , : , : |
137 | instantiation | 148, 142, 143 | ⊢ |
| : , : , : |
138 | conjecture | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
139 | instantiation | 148, 144, 145 | ⊢ |
| : , : , : |
140 | conjecture | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
141 | conjecture | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
142 | conjecture | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nat_pos_within_rational_pos |
143 | conjecture | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
144 | conjecture | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
145 | instantiation | 148, 146, 147 | ⊢ |
| : , : , : |
146 | conjecture | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
147 | instantiation | 148, 149, 150 | ⊢ |
| : , : , : |
148 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
149 | conjecture | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
150 | conjecture | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
*equality replacement requirements |