| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4* | ⊢  |
| : , : , :  |
1 | reference | 34 | ⊢  |
2 | reference | 29 | ⊢  |
3 | instantiation | 21, 5, 6, 7 | ⊢  |
| : , : , : , :  |
4 | instantiation | 25, 95, 77, 60, 8, 9*, 10* | ⊢  |
| : , : , : , :  |
5 | instantiation | 34, 49, 11, 12* | ⊢  |
| : , : , :  |
6 | instantiation | 37 | ⊢  |
| :  |
7 | instantiation | 38, 13 | ⊢  |
| : , :  |
8 | instantiation | 14, 88, 15, 16, 17, 65*, 18* | ⊢  |
| : , : , :  |
9 | instantiation | 52, 53, 77, 54, 42, 79, 43 | ⊢  |
| : , : , : , : , : , : , :  |
10 | instantiation | 44, 19, 20 | ⊢  |
| : , : , :  |
11 | instantiation | 21, 22, 23, 24 | ⊢  |
| : , : , : , :  |
12 | instantiation | 25, 95, 77, 60, 61, 26, 27*, 28* | ⊢  |
| : , : , : , :  |
13 | instantiation | 48, 29 | ⊢  |
| : , :  |
14 | theorem | | ⊢  |
| proveit.numbers.addition.strong_bound_via_left_term_bound |
15 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
16 | instantiation | 93, 89, 30 | ⊢  |
| : , : , :  |
17 | instantiation | 40, 31 | ⊢  |
| :  |
18 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.add_8_1 |
19 | instantiation | 50, 32 | ⊢  |
| : , : , :  |
20 | instantiation | 52, 53, 77, 33, 55, 79, 56 | ⊢  |
| : , : , : , : , : , : , :  |
21 | theorem | | ⊢  |
| proveit.logic.equality.four_chain_transitivity |
22 | instantiation | 34, 78, 35, 36* | ⊢  |
| : , : , :  |
23 | instantiation | 37 | ⊢  |
| :  |
24 | instantiation | 38, 39 | ⊢  |
| : , :  |
25 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.md_nine_add_one |
26 | instantiation | 40, 41 | ⊢  |
| :  |
27 | instantiation | 52, 53, 77, 59, 42, 79, 43 | ⊢  |
| : , : , : , : , : , : , :  |
28 | instantiation | 44, 45, 46 | ⊢  |
| : , : , :  |
29 | instantiation | 57, 58, 54, 60 | ⊢  |
| : , :  |
30 | instantiation | 93, 91, 47 | ⊢  |
| : , : , :  |
31 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat8 |
32 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.add_1_1 |
33 | instantiation | 66 | ⊢  |
| : , :  |
34 | axiom | | ⊢  |
| proveit.core_expr_types.tuples.tuple_len_incr |
35 | instantiation | 86 | ⊢  |
| : , : , : , : , : , : , : , : , :  |
36 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.add_9_1 |
37 | axiom | | ⊢  |
| proveit.logic.equality.equals_reflexivity |
38 | theorem | | ⊢  |
| proveit.logic.equality.equals_reversal |
39 | instantiation | 48, 49 | ⊢  |
| : , :  |
40 | theorem | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
41 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat9 |
42 | instantiation | 63, 77 | ⊢  |
| : , :  |
43 | instantiation | 64, 65 | ⊢  |
| : , : , :  |
44 | axiom | | ⊢  |
| proveit.logic.equality.equals_transitivity |
45 | instantiation | 50, 51 | ⊢  |
| : , : , :  |
46 | instantiation | 52, 53, 77, 54, 55, 79, 56 | ⊢  |
| : , : , : , : , : , : , :  |
47 | instantiation | 93, 94, 74 | ⊢  |
| : , : , :  |
48 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.range_from1_len |
49 | instantiation | 57, 58, 59, 60, 61 | ⊢  |
| : , :  |
50 | axiom | | ⊢  |
| proveit.logic.equality.substitution |
51 | instantiation | 62, 83 | ⊢  |
| :  |
52 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.tuple_portion_substitution |
53 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat2 |
54 | instantiation | 66 | ⊢  |
| : , :  |
55 | instantiation | 63, 77 | ⊢  |
| : , :  |
56 | instantiation | 64, 65 | ⊢  |
| : , : , :  |
57 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.deci_sequence_is_nat |
58 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat2 |
59 | instantiation | 66 | ⊢  |
| : , :  |
60 | instantiation | 68, 67, 70 | ⊢  |
| : , : , :  |
61 | instantiation | 68, 69, 70 | ⊢  |
| : , : , :  |
62 | theorem | | ⊢  |
| proveit.numbers.addition.elim_zero_left |
63 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.range_from1_len_typical_eq |
64 | axiom | | ⊢  |
| proveit.core_expr_types.tuples.empty_range_def |
65 | instantiation | 71, 72, 73 | ⊢  |
| : , : , :  |
66 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
67 | instantiation | 76, 95, 74, 75 | ⊢  |
| : , : , : , : , :  |
68 | theorem | | ⊢  |
| proveit.logic.equality.sub_left_side_into |
69 | instantiation | 76, 77, 78, 79, 80 | ⊢  |
| : , : , : , : , :  |
70 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.N_leq_9_enumSet |
71 | theorem | | ⊢  |
| proveit.logic.equality.sub_right_side_into |
72 | instantiation | 81, 83 | ⊢  |
| :  |
73 | instantiation | 82, 83, 84 | ⊢  |
| : , :  |
74 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat8 |
75 | instantiation | 85 | ⊢  |
| : , : , : , : , : , : , : , :  |
76 | theorem | | ⊢  |
| proveit.logic.sets.enumeration.in_enumerated_set |
77 | axiom | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
78 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat9 |
79 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
80 | instantiation | 86 | ⊢  |
| : , : , : , : , : , : , : , : , :  |
81 | theorem | | ⊢  |
| proveit.numbers.addition.elim_zero_right |
82 | theorem | | ⊢  |
| proveit.numbers.addition.commutation |
83 | instantiation | 93, 87, 88 | ⊢  |
| : , : , :  |
84 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.zero_is_complex |
85 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_8_typical_eq |
86 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_9_typical_eq |
87 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
88 | instantiation | 93, 89, 90 | ⊢  |
| : , : , :  |
89 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
90 | instantiation | 93, 91, 92 | ⊢  |
| : , : , :  |
91 | theorem | | ⊢  |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
92 | instantiation | 93, 94, 95 | ⊢  |
| : , : , :  |
93 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
94 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nat_within_int |
95 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |