| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4* | ⊢ |
| : , : , : |
1 | reference | 13 | ⊢ |
2 | reference | 27 | ⊢ |
3 | instantiation | 5, 6, 7, 8 | ⊢ |
| : , : , : , : |
4 | instantiation | 9, 73, 55, 38, 39, 10, 11*, 12* | ⊢ |
| : , : , : , : |
5 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
6 | instantiation | 13, 56, 14, 15* | ⊢ |
| : , : , : |
7 | instantiation | 16 | ⊢ |
| : |
8 | instantiation | 17, 18 | ⊢ |
| : , : |
9 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.md_nine_add_one |
10 | instantiation | 19, 20 | ⊢ |
| : |
11 | instantiation | 30, 31, 55, 37, 21, 57, 22 | ⊢ |
| : , : , : , : , : , : , : |
12 | instantiation | 23, 24, 25 | ⊢ |
| : , : , : |
13 | axiom | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_incr |
14 | instantiation | 64 | ⊢ |
| : , : , : , : , : , : , : , : , : |
15 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_9_1 |
16 | axiom | | ⊢ |
| proveit.logic.equality.equals_reflexivity |
17 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
18 | instantiation | 26, 27 | ⊢ |
| : , : |
19 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
20 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat9 |
21 | instantiation | 41, 55 | ⊢ |
| : , : |
22 | instantiation | 42, 43 | ⊢ |
| : , : , : |
23 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
24 | instantiation | 28, 29 | ⊢ |
| : , : , : |
25 | instantiation | 30, 31, 55, 32, 33, 57, 34 | ⊢ |
| : , : , : , : , : , : , : |
26 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.range_from1_len |
27 | instantiation | 35, 36, 37, 38, 39 | ⊢ |
| : , : |
28 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
29 | instantiation | 40, 61 | ⊢ |
| : |
30 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_portion_substitution |
31 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
32 | instantiation | 44 | ⊢ |
| : , : |
33 | instantiation | 41, 55 | ⊢ |
| : , : |
34 | instantiation | 42, 43 | ⊢ |
| : , : , : |
35 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.deci_sequence_is_nat |
36 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
37 | instantiation | 44 | ⊢ |
| : , : |
38 | instantiation | 46, 45, 48 | ⊢ |
| : , : , : |
39 | instantiation | 46, 47, 48 | ⊢ |
| : , : , : |
40 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_left |
41 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.range_from1_len_typical_eq |
42 | axiom | | ⊢ |
| proveit.core_expr_types.tuples.empty_range_def |
43 | instantiation | 49, 50, 51 | ⊢ |
| : , : , : |
44 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
45 | instantiation | 54, 73, 52, 53 | ⊢ |
| : , : , : , : , : |
46 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
47 | instantiation | 54, 55, 56, 57, 58 | ⊢ |
| : , : , : , : , : |
48 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.N_leq_9_enumSet |
49 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
50 | instantiation | 59, 61 | ⊢ |
| : |
51 | instantiation | 60, 61, 62 | ⊢ |
| : , : |
52 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat8 |
53 | instantiation | 63 | ⊢ |
| : , : , : , : , : , : , : , : |
54 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.in_enumerated_set |
55 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
56 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat9 |
57 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
58 | instantiation | 64 | ⊢ |
| : , : , : , : , : , : , : , : , : |
59 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_right |
60 | theorem | | ⊢ |
| proveit.numbers.addition.commutation |
61 | instantiation | 71, 65, 66 | ⊢ |
| : , : , : |
62 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.zero_is_complex |
63 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_8_typical_eq |
64 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_9_typical_eq |
65 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
66 | instantiation | 71, 67, 68 | ⊢ |
| : , : , : |
67 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
68 | instantiation | 71, 69, 70 | ⊢ |
| : , : , : |
69 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
70 | instantiation | 71, 72, 73 | ⊢ |
| : , : , : |
71 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
72 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
73 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |